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Abstract

Hyperloop is a high-speed transportation concept, where pressurized capsules (�pods�)
travel through vacuum tubes. The control system developed in this thesis is designed to
control a second-generation prototype Hyperloop pod competing in a student competition
hosted by SpaceX in Los Angeles, California. The main design objectives were correctness
and reliability while improving performance in comparison to the control system of the
previous pod.

Although no real-time operating system was used, the system was designed to be funda-
mentally asynchronous and runs across two CPU cores and a Control Law Accelerator.
It transmits telemetry data to a control panel over a network and logs all incoming sensor
data, as well as derived data. Robust navigation and control algorithms guarantee safe
operation of the vehicle and correct responses during failures.

The control system was deployed and tested in the �eld before and during the competi-
tion and performed perfectly. Although a manufacturing fault in the propulsion system
prevented the team from advancing to the �nals of the competition, the pod's design
tackles many technical issues relating to high-speed transportation in a low-pressure en-
vironment.
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Chapter 1
Introduction

The Hyperloop Passenger Transportation Concept was initially proposed by Elon Musk
in his Hyperloop Alpha paper[4] as an alternative to the planned high-speed rail project
connecting San Francisco and Los Angeles. It was argued that the high-speed rail project
is not state of the art in terms of technology, it is much too expensive and signi�cantly
slower than other high-speed trains around the world. The objective of the Hyperloop
is to achieve passenger transport on the ground over long distances at speeds exceeding
1220 km/h.

To achieve such high speeds, pressurized passenger capsules ("pods") would run in tubes
where near vacuum is maintained. The initial proposal also called for air-bearings to allow
the pod to levitate during transit. In order to supply the air bearings with pressurised air
and further reduce drag, a compressor would suck the remaining air in through an inlet
at the front of the pod. A linear motor system would be used to accelerate and decelerate
the pod at high speeds while limiting the acceleration to 1g for passenger comfort.

1.1. Hyperloop Pod Competition

Although the Hyperloop Alpha proposal was turned down, SpaceX decided in 2015 to
hold a student competition[5] in order to drive the development of Hyperloop technology.
To this end they constructed a 1,25km test tube designed to reach an ambient pressure
of 8mBar. The tube features an aluminium sub-track and rail mounted on a concrete �ll
bed.

1



1. Introduction

Figure 1.1.: Hyperloop test tube at SpaceX headquarters in Los Angeles.

Since the �rst competition there have been a second and third iteration and a forth has
been announced for the summer of 2019.

The objective for the teams is to build a prototype Hyperloop pod and race it in the
test tube. The pod reaching the highest velocity with successful deceleration wins the
competition. During the �rst and second competition, a pusher vehicle was available to
accelerate the pods to a pre-de�ned velocity at the beginning of their run. Therefore,
it was optional for a pod to incorporate a propulsion system. However, in the third
competition the pods were required to accelerate independently.

The �rst step of the competition is the Preliminary Design Brie�ng in which the team
must outline the main concepts of their pod design. After it has been approved teams may
proceed to submit the Final Design Brie�ng a few months later. This must include all
details of the pod's design and show that the design is safe. Approximately 20 teams are
then selected to compete in the competition at SpaceX headquarters in Los Angeles.

The competition in Los Angeles consists mostly of a testing week where the pod must
pass a series of tests to prove safety and correct operation before being allowed to enter
the test tube. The most promising teams are then selected to compete in the �nal on
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1. Introduction

the last day of the competition. Here teams aim to reach the highest speed in order to
win the competition.

1.2. Swissloop

Swissloop[6] was founded as an association in September 2016 by a group of ETH Zurich
students with the intention of competing in the second iteration of the Hyperloop Pod
Competition. Swissloop was able to gain support from many industry sponsors and
several departments at ETH Zurich including the Integrated Systems Laboratory. In
July 2017 Swissloop revealed it's �rst pod Escher to the public. After reaching the �nals
of the competition with Escher in August 2017, a new team was assembled to compete
in the third competition in July 2018 with a completely new pod called Mujinga.

1.2.1. Escher

Swissloop's �rst pod featured a cold gas propulsion system which was designed for a
second acceleration stage after the initial acceleration delivered by the pusher. The pod
also featured hydraulic bakes as well as a passive levitation system.

The avionics implemented for Escher included around 30 sensors and provided a reliable
basis for controlling the pod. Although eventually several �aws became apparent, the
system provided a solid basis for the development of the avionics system of Mujinga.
While Mujinga retained some components of the hardware, the design ended up being
completely di�erent in several ways. The Software was almost entirely rewritten from
the ground up leading to large performance and reliability improvements.

Figure 1.2.: Rendering of Escher with transparent shell.
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1. Introduction

1.2.2. Mujinga

Swissloop's second pod design builds on the lessons learned with Escher but includes
many signi�cant changes. Most noticeable, Mujinga no longer levitates but uses wheels
and four electric motors as a propulsion system. Two high-voltage (700V) batteries
produce 500kW of power to accelerate to a top-speed of 500km/h. Similar but redesigned
hydraulic brakes decelerate the pod before the end of the 1,25km test track. A pneumatic
clamping system presses the pod against the track to produce the down-force necessary
to achieve the necessary acceleration.

As mentioned, the avionics system was based on the platform used in Escher. However,
much emphasis was placed on greater simplicity and reducing bottlenecks. A problem
with the logging system in Escher meant that the amount of data that could be acquired
was very small. Therefore, the logging system in Mujinga was speci�cally designed to
handle much higher data rates.

Figure 1.3.: Rendering of Mujinga with transparent shell.
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1. Introduction

Figure 1.4.: Picture of Mujinga with separated shell.

1.3. Project Scope

To guarantee safe operation of the pod, an avionics system needed to be designed. The
system uses a collection of on-board sensors to navigate the test track and control the
pod according to the speci�ed parameters. It also provides telemetry data over a network
connection and can be controlled remotely. Various devices such as four motor-controllers
(inverters) need to be controlled and all acquired data should be logged. The scope of
this Bachelor Thesis is the implementation of the avionics and control software running
on the pod in order to compete at the Hyperloop Pod Competition. This includes the
following tasks:

� Platform selection (micro-controller, peripherals, sensors)

� Development of drivers to interface and communicate with on-board sensors

� Development of drivers for a network interface and SD card

5



1. Introduction

� Development of drivers for communication with motor controllers (inverters), bat-
tery management systems and brake actuators

� Implementation of a control scheme which ensures safe and correct operation of
the pod while executing traction control and yaw control algorithms (developed by
team members)

� Implementing communication with a control panel (developed by another team
member) over a network and logging all collected data, as well as system events

The following tasks are not part of this bachelor thesis and were completed by other
people:

� Design of custom PCBs (Hanno Kappen)

� Development of traction control (Julius Wanner and Stefan Weber) and yaw control
algorithms (Yannick Strümpler)

� Development of a control panel for visualizing telemetry and controlling the pod
(Laurin Paech)

� Wireless network for communication with the pod (SpaceX)

The control system in this thesis was developed speci�cally for the Hyperloop Pod Stu-
dent Competition. As such it was tested in the �eld as part of the Mujinga pod at testing
facilities in Switzerland and at the competition in Los Angeles at SpaceX's headquar-
ters.
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Chapter 2
System Overview
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Figure 2.1.: System Structure

Figure 2.1 illustrates the overall structure of the control system. The main component of
the control system is a Texas Instruments Launchpad (drawn in red) featuring a dual-core
micro-controller.

A series of pressure sensors produce analog signals that are sampled by an external Analog
to Digital Converter (ADC). The external ADC communicates with the micro-controller

7



2. System Overview

over an SPI bus. Laser Distance Sensors connect to one of two RS485 buses in order to
communicate with the micro-controller through an RS485 transceiver. On a separate SPI
bus the micro-controller interfaces with an SD-Card and an Ethernet Controller. Four
motor-controllers (inverters) and two battery management systems are connected with
the micro-controller via a CAN bus.

The following sections discuss each component of the system, as well as speci�cations for
the control system.

2.1. Sensors

2.1.1. Laser Distance Sensors

In total four laser distance sensors were used to assess the vehicle attitude in relation to
the rail.

Two high precision sensors were employed to measure the lateral alignment to the track
at the front and the back of the pod. These sensors provided the input for the yaw
controller in order to actively ensure that the pod is correctly aligned with the track and
not exercising any torque on the rail.

Two smaller form-factor sensors were also installed at the front and back of the pod to
measure the pods vertical alignment. These were mostly used to assess the performance
of the clamping system.

2.1.2. Pressure Sensors

Ambient pressure sensors

A high-precision pressure sensor was installed to monitor the ambient pressure. Two
further ambient pressure sensors were installed inside of each high-voltage battery pack,
as these were pressurized. If the pressure inside the battery packs drops too low the
battery cells could be permanently damaged. Therefore, it was necessary to monitor
these values and re-pressurize the pod's environment in the event of a leak.

Braking pressure sensors

Four high-pressure sensors were installed in the braking system. One in each braking
piston to measure the pressure with which the brakes actuate and to determine their
status. Additionally, one sensor was installed in each reservoir holding the pressure used
to engage the brakes in order to monitor brake health. The braking system consisted

8



2. System Overview

of two independent hydraulic systems for redundancy, thus two sets of sensors were
necessary.

2.1.3. Navigational Sensors

Two laser contrast sensors were used to detect optical marking on the wall of the test
tube. The optical markings occur in intervals of 30m and can therefore be used to
determine the location of the pod along the tube and calculate it's velocity.

2.2. Propulsion system

Four two-phase electric motors are used to accelerate the pod. Each is driven by a
separate inverter. The inverters are controlled via a CAN bus and two digital safety
signals. The RFE signal enables the inverter and the RUN signal connects the high
voltage from the battery to the motor. The inverter can be con�gured over the CAN
bus. Subsequently, both torque and speed commands can be given to the inverters to
drive the motors. Furthermore, the inverters provide telemetry over CAN including the
following:

� Inverter status

� DC bus voltage

� DC current

� Motor RPMs

� Motor RMS current

� Inverter temperature

� Motor temperature

2.3. Battery Management System (BMS)

Two battery management modules (one in each battery pack) are responsible for balanc-
ing the battery cells and monitoring them. These modules are also connected to a CAN
bus and provide the following telemetry over it:

� High-voltage isolation status

� Battery Pack Voltage

� Discharge/Charge current

9



2. System Overview

� Lowest cell voltage

� Highest cell temperature

2.4. Telemetry and Control Panel

To monitor the pod a network is made available inside the tube. The pod connects to
this network and must transmit all telemetry necessary to assess the pod's state and
make sure it is safe. In addition, the pod is controlled over the network. Should the
connection to the pod fail at any point, the pod must enter a safe state immediately. To
control the pod and display telemetry a control panel application was developed.

Figure 2.2.: Screen shot of the control panel.

2.5. Data Logging

In order to verify the pod's performance and diagnose possible failures, we wanted to be
able to log as much data as possible. Therefore, we set a goal of logging all sensor data
that comes into the system. In order to e�ciently visualize logged data, a specialized
plotting application was developed.

10



2. System Overview

Figure 2.3.: Screen shot of the specialized plotting application.

2.6. Control and State Machine

Overall, the pod is controlled by a �nite state machine (FSM) which is illustrated in
Figure 3.8. The FSM must incorporate all critical safety checks and is also used to
allow the pod to complete the run autonomously. In order to improve testability, the
FSM should have the minimum number of states necessary for the desired functionality.
To this end we also decided to minimize the number of automatic state transitions,
minimizing the risk of bugs in the implementation.

2.7. Correctness and Testability

The highest priority for this system was to ensure correctness and safety. Therefore it
was important to minimize sources of errors and implement the system with testability
in mind. Tests include unit tests for individual control sequences and algorithms, as well
as functional tests.

11



2. System Overview

2.8. Platform

The hardware platform used for this project is a combination of a custom designed PCB
and a Texas Instruments Launchpad (LAUNCHXL-F28379D)[7] featuring the TMS320F28379D
micro-controller[8]. The Launchpad provides a solid basis which includes all the compo-
nents necessary to run the micro-controller. It then plugs into the custom PCB which
accommodates all the necessary external components and incorporates connectors for all
sensors and actuators.

Figure 2.4.: Custom PCB with Texas Instruments Launchpad.

2.8.1. Micro-controller

The Texas Instruments TMS320F28379D[8] was chosen as it provides high performance
in terms of processing power with two C28x CPU cores running at 200 MHz and two
Control Law Accelerators (CLA). In addition, it incorporates a wide range of versatile
peripherals covering most types of interfaces used in the system. Furthermore, this
processor is a dual-core version of the single core TMS320F28377S which proved to work
very well in Escher.

Figure 2.5 shows a functional block diagram of the chosen micro-controller. It includes
1MB of FLASH memory that is split between the two C28x CPU cores. In total, the
micro-controller includes 204KB of local, local shared and global shared RAM. The var-
ious peripherals are available on the buses of both CPUs and some are available to the
DMA controllers and CLA co-processors.
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2. System Overview
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1.4 Functional Block Diagram
Figure 1-1 shows the CPU system and associated peripherals.

Figure 1-1. Functional Block Diagram
Figure 2.5.: Functional block diagram micro-controller - Texas Instruments [2]

Texas Instruments provides a good Runtime Support Library (RTS) for C, as well as
header �les and support functions as part of ControlSUITE[9] making it easier to access
device registers.

2.8.2. Ethernet Controller

To establish a network connection on the test track an Ethernet connection was required.
Since the micro-controller is not equipped with an Ethernet interface, it needed to be
included externally.

After considering several options we decided on theWIZnet W5500 Ethernet Controller[10].
Beyond providing Ethernet support it also incorporates hardware implementations of
ICMP, ARP, IPv4, TCP, UDP and other protocols. This is advantageous as it o�oads
the computation necessary to run the network stack from the main processor, provid-
ing better performance. Furthermore, the chip is widely used and therefore has good
community support.
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2. System Overview

The micro-controller communicates with the Ethernet Controller over SPI but the W5500
also provides an interrupt line which can be con�gured to provide interrupts on events
such as incoming packages.

2.8.3. SD-Card

In order to log telemetry data, a form of non-volatile memory was needed. The data
must be easily accessible and quickly retrievable. The obvious and most suitable choice
is an SD-card, as it can be integrated into the SPI bus and provides large amounts of
storage. At the same time it can be easily plugged into a laptop in order to retrieve the
data in the �eld.

2.8.4. External Analog-To-Digital Converter (ADC)

The pressure sensors on the pod produce analog signals that need to be converted. Addi-
tionally, the pod incorporates a set of low-voltage batteries and it is necessary to monitor
their voltage and discharge current. Although the micro-controller features a built-in 12-
bit ADC which could accomplish this task, we wanted to achieve higher precision using
an external 24-bit ADC (ADS124S08). Communication with the ADC also runs over
an SPI bus. However, the external ADC uses a di�erent SPI mode than the Ethernet
Controller and SD-card. Thus a separate SPI bus is required.

2.8.5. RS485 Bus

An objective in the design of this system, was to use as many digital sensors as possible.
This was possible for both types of laser distance sensors used on the pod. Both support
the RS485 serial bus. Using an appropriate RS485 transceiver, the Serial Communication
Interface (SCI) of the micro-controller can be utilized almost natively to communicate
with multiple sensors on a single RS485 bus. Unfortunately the two types of sensors use
di�erent bus settings and thus it was simpler to separate them into two buses with two
sensors each.

RS485 utilizes di�erential signalling to transmit words asynchronously in the same format
as the more widely used RS232 protocol. Since RS485 uses a single di�erential signal, it
is only possible for one device to transmit at a time.

Using the RS485 bus standard means less analog signals that are more prone to inter-
ference. Furthermore, it also allows for higher precision, as there are no precision losses
during to conversions.
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2. System Overview

2.8.6. CAN Bus

The motor-controllers (inverters) used on the pod are designed for automotive appli-
cations, while the Battery Management Systems (BMS) are designed for aerospace ap-
plications. Both systems are designed to use the CAN bus for control and telemetry.
The micro-controller incorporates a CAN bus and transceiver on the Launchpad making
communication with these devices possible without any additional hardware.

The main advantages of the CAN bus in this application are built-in bus arbitration and
automatic retransmission. This allows devices on the CAN bus to transmit telemetry
data asynchronously without the possibility of data loss.
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Chapter 3
Control System Implementation

The software for the micro-controller was implemented using the C Programming Lan-
guage. I considered using a real-time operating system but decided that in this case
it would be simpler not to do so. The software runs a main loop and all modules are
fundamentally asynchronous. In testing it was possible to show that this yielded very
good performance.

Another major design decision is to use only static memory allocation. Although at
times this can be limiting and is less space e�cient than dynamic memory allocation, it
also leads to higher performance. More importantly, this approach guarantees that there
are no memory leaks, which can otherwise become fatal bugs that may be di�cult to
diagnose.

3.1. Structure

Each CPU core runs independently from the other, except during system initialisation.
Since some peripherals need to be initialised in the correct sequence and the main loop
should not be entered until the entire system is initialised, inter-processor communication
(IPC) �ags are used to synchronise both cores during start-up.

Each core has dedicated FLASH memory, as well as dedicated RAM regions. Additional
shared RAM can be read by both CPUs but only written to by one CPU per block.
At boot CPU1 con�gures the global shared RAM regions according to the application's
needs and then sends a command to the boot loader on CPU2 using IPC registers to
start the program for CPU2.
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3. Control System Implementation

Overall Structure

CPU1.CLA1
• Controllers

CPU1
• State machine
• Control logic
• All other peripherals

CPU2
• Logging
• Networking

CPU2.CLA1
• Unused

Figure 3.1.: Division of tasks between processors and co-processors.

Figure 3.1 shows the division of tasks between the two CPU cores and one of the Control
Law Accelerator (CLA) co-processors. CPU1 runs most drivers and handles the control
logic and state machine. All sensor data is processed on this core and all control decisions
are made on it as well. This consolidates the data processing and control logic in one
program without the need for concurrency control that could be subject to hard to �nd
bugs.

CPU2 is dedicated to Logging and Networking. The main constraint leading to this is
that the FAT �le system is computationally heavy and, as will be discussed in section 3.3,
is hard to implement asynchronously. In order to reduce the performance impact, logging
was separated onto the second core. However, since the Ethernet controller uses the same
SPI bus as the SD-card and only one CPU core can be the master of each peripheral (in
this case one of the SPI interfaces), networking also needs to be handled on the second
core.

Two control algorithms for traction and yaw control must execute regularly in precise
intervals and therefore stand in con�ict with the asynchronous nature of the remaining
system. Furthermore, as they were developed by other people who did not necessarily
have detailed knowledge of the system, it made sense to provide an isolated environment
for the execution of the controllers.

The CLA co-processor runs at the same frequency as the associated CPU core but exe-
cutes code independently. It is assigned areas of the associated CPU's dedicated RAM
for program and data space. As the CLA co-processor is designed to run controllers, it
can be assigned up to eight function pointers, which represent tasks. These tasks can be
triggered from peripherals but also from software running on the CPU. Once a task is
triggered, it runs to completion. Although the instruction set for the CLA is separate
and signi�cantly more limited, these other features make the CLA perfectly suited for
the task.

3.1.1. Module life-cycle

All modules and drivers follow a similar structure. This structure mainly consists of three
functions that are called at di�erent times during the module life-cycle as illustrates in
Figure 3.2: init(), configure() and update().
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3. Control System Implementation

Module lifecycle

init()

configure()

update()

System initialization
Memory configuration

Interrupts enabled

Enter main loop

Figure 3.2.: Life-cycle of each module in the system.

Immediately after system initialization and memory con�guration is complete, init()
is called to allow modules to perform initialisation routines, con�gure peripherals and
enable required interrupts. However, interrupts remain globally disabled for the duration
of these function's execution.

Some drivers require further initialisation after interrupts have been enabled. Mostly
this involves the con�guration of an external device such as the Ethernet Controller,
SD-card and laser distance sensors. These initialisation sequences require fully func-
tional communication and therefore interrupts. This is the purpose of the configure()
functions.

After start-up is complete the processor enters the main loop. At each iteration of the
loop the update() function of each module is called. If the module does not need to
perform any computation at that time it immediately returns. Several modules use
internal �nite state machines in order to allow for asynchronous execution.
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3. Control System Implementation

3.1.2. Data-�ow

Sensor data processing

driver globals_sensor_data()

globals

state

log

Figure 3.3.: Flow of sensor data and derived data.

All data processing is centralised using the globals_sensor_data() function. The
concept is to simplify how data is distributed throughout the program. Drivers call
globals_sensor_data() whenever a new data point is gathered from a sensor. Derived
data such as velocity or location is also collected through this function. In this way the
data �ow is abstracted from the driver layer improving modularisation, maintainability
and �exibility.

Once a data point has been collected by a call to globals_sensor_data(), the data
can be stored to a global structure for use by other modules and used to update the
global �nite state machine. Additionally, all data points are logged as will be described
in Section 3.3.

3.2. Networking

The network protocol needs to be resistant to packet loss and unstable network connec-
tions, while still providing a steady stream of data. Unlike the event-based logging system
(Section 3.3) telemetry data transmitted over the network can be relatively infrequent
and there is no data that must be delivered at a higher rate than other data. Therefore
I implemented the protocol using UDP packets. The structure listed in Appendix A
holds all the data that needs to be transmitted. It �ts into a single UDP packet without
segmentation. This makes it very e�cient when transmitting telemetry and resistant to
occasional packet loss as only one packet is needed to observe the pod's state.

For controlling the pod remotely from the control panel the protocol follows an analogous
scheme using a control frame consisting of the following structure.

struct ctrl_frame {

uint16_t set_state; // 0: D.C. / ..: the state

uint16_t aux_power; // 0: D.C. / 1: OFF / 2: ON
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3. Control System Implementation

uint16_t precharge; // 0: D.C. / 1: OFF / 2: ON

uint16_t battery; // 0: D.C. / 1: OFF / 2: ON

uint16_t brakes; // 0: D.C. / 1: DISENGAGE / 2: ENGAGE

uint16_t low_speed; // 0: D.C. / 1: BACK / 2: STOP / 3: FWD

uint16_t clear_fault; // 0: D.C. / 1: CLEAR

uint16_t reset_run; // 0: D.C. / 1: RESET

uint16_t bms_power; // 0: D.C. / 1: OFF / 2: ON

uint16_t eject_sd_card; // 0: D.C. / 1: EJECT

};

Both the telemetry frame and control frame must be sent (and received) regularly in
order for the pod and the control panel to check connectivity and enter a safe state
should it fail. Therefore the �elds in the control frame are usually zero and a non-zero
value indicates a control command.

Although the networking driver primarily executes on CPU2, a small portion also exe-
cutes on CPU1. This is necessary, since all telemetry data originates from CPU1. Rather
than placing data in global structures unnecessarily, the telemetry frame is simply assem-
bled on CPU1 and then read by the DMA controller on CPU2. Similarly, CPU2 receives
incoming control packets and CPU1 decodes them and executes any control commands.
This process is illustrated by Figure 3.4.
Networking

CPU2
• Configure Ethernet controller
• Open port
• Transfer packets to/from 

Ethernet controller 

CPU1
• Assemble telemetry frame
• Decode and process control 

frame

Telemetry frame

Control frame

CPU1 to CPU2 Msg RAM

CPU2 to CPU1 Msg RAM

IPC flags used to signal 
events between 

processors

Figure 3.4.: Structure of networking driver.

The telemetry and control frames are written to Message RAM, which is a shared memory
area speci�cally designed for this kind of usage. It consists of two 1K regions, one
writeable only by CPU1 and one only writeable by CPU2. The telemetry frame only
consists of 76 16-bit words and therefore easily �ts into the Message RAM. The micro-
controllers Interprocessor Communication (IPC) module further provides �ag registers.
The networking driver uses IPC �ags to notify the other CPU of the following events:

� CPU1 → CPU2: Telemetry frame assembled and ready for transmission.

� CPU2 → CPU1: Telemetry frame has been transmitted and can be overwritten.
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3. Control System Implementation

� CPU2 → CPU1: Control frame received.

� CPU1 → CPU2: Control frame has been processed and can be overwritten.

To achieve the highest possible performance all SPI communication with the Ethernet
controller are implemented using the micro-controller's DMA controller. Since the SPI
interface can be used with a 16-level FIFO extension, the DMA controller can operate
in Burst mode. This means that the data is transferred in bursts of 16 words until the
transfer has completed. The next bust is triggered by the FIFO interrupt which can be
con�gured to assert at a speci�c level. For this implementation it is con�gured to trigger
when the FIFO is empty but depending on the size of the bursts this can be optimized.

The following listing shows the process of con�guring channel one of the DMA controller
for transmission of a bu�er at src of length len. Notice that the burst length must be a
divisor of the total bu�er size. This is because the DMA controller cannot handle bursts
of di�erent lengths.

void spia_tx_dma(uint16_t *src, uint16_t len)

{

uint16_t burst;

// Calculate largest burst length

for (burst = 16; len % burst; burst /= 2) ;

// Reset the TX FIFO

SpiaRegs.SPIFFTX.bit.TXFIFO = 0;

// Configure DMACH1 for SPIA TX

DMACH1AddrConfig(&SpiaRegs.SPITXBUF, src);

DMACH1BurstConfig(burst - 1, 1, 0); // Burst size, src step, dest step

DMACH1TransferConfig((len / burst) - 1, 1, 0); // Number of transfers, src step, dest step

DMACH1ModeConfig(DMA_SPIATX,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,

SYNC_DISABLE,SYNC_SRC,OVRFLOW_DISABLE,SIXTEEN_BIT,

CHINT_END,CHINT_ENABLE);

// Set the TX FIFO interrupt level

SpiaRegs.SPIFFTX.bit.TXFFIL = 0;

// Start the DMA transfer

_spia_tx_dma_done = 0;

StartDMACH1();

// Release the TX FIFO from reset

SpiaRegs.SPIFFTX.bit.TXFIFO = 1;
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3. Control System Implementation

}

The procedure for con�guring the DMA controller to read data from the SPI interface is
analogous.

Using the DMA controller means that the SPI interface can operate at it's highest possible
data-rate without causing signi�cant CPU usage. The clock rate used for the SPI bus is
12,5 MHz.

3.3. Logging

In order to allow the pod's performance to be evaluated and failures to be diagnosed,
all acquired and derived data must be logged and easily retrievable. The logging system
implemented in this thesis represents the area with the largest improvement compared
to the system implemented for the �rst-generation prototype Escher. An SD-card is
used to provide non-volatile and removable memory that can be easily accessed on other
platforms.

3.3.1. File system

The largest design decision in designing the logging driver was the �le system to use. The
main requirement was for the logged data to be quickly and easily retrievable. The most
commonly used �le system on SD-cards is FAT (FAT32 or exFAT). The advantage of the
FAT �le system in this case is that it can be read with almost any computer making it
particularly easy to retrieve log �les. On the other hand, FAT is very ine�cient unless
the FAT table (which on larger storage devices is very large) can be cached in memory.
If the FAT table is not cached, it must be read block by block every time a �le is being
written and a new block is needed. In embedded applications like this one, it is usually
not possible to cache the FAT table.

Instead of using FAT I also considered employing specialized logging �le systems such
as log_fs[11] and Ya�s[12]. These sequentially write to the storage medium and do not
need to access any other data structures while writing the �le. Although this leads to
higher performance while writing, it also makes �nding and extracting log data much
more complex. Furthermore, it is not possible to read the data on a regular computer
without specialised software. For this reason, I decided to use the FAT �le system and
write the log data to CSV �les.

Log �les are created at system start-up and data is continuously appended until the
system shuts down or a manual command is given to close the �le and ensure data
consistency. The CSV �le consists of three columns:
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� timestamp: The time stamp of the data point measured in milliseconds since
system start-up.

� id: An integer describing the type of data point or event being logged. IDs are
de�ned by the enumeration listed in Appendix B

� value: The value being logged.

The following listing illustrates the structure of a typical log �le:

timestamp;id;value

4778;41;7

4778;39;348

4778;40;3820

4778;42;24

4778;45;5

4778;43;352

4778;44;3781

4778;46;26

4778;5;0

4778;4;0

4879;38;0

4879;37;0

4879;36;0

4879;1;6

4879;2;4

Although bene�cial, implementing a specialised FAT driver would not have been possible
within the time-frame of this project. Therefore, I decided to use the FatFs[13] library. At
�rst I attempted to use the newest version of the library. However, the micro-controller
uses 16-bit addressable memory and therefore does not support 8-bit data types. Without
rewriting large portions of the library it was not possible for it to run without native
8-bit data types. Luckily Texas Instruments includes an older version of the library with
ControlSUITE[9] that is able to run without 8-bit data types.

The FatFs library provides the �le system layer but an SD-card driver layer also needed
to be implemented to provide the interface to the underlying storage medium through the
SPI driver. Unlike all other drivers, the SD-card and FAT drivers are not asynchronous.
This is mostly due to how the FatFs library operates. Additionally, the data is organised
into 8-bit bytes each contained within a 16-bit word which is the smallest possible data
type on the processor. Due to this constraint the use of DMA is not practical as data
mapping is necessary before data can be written to the SPI interface and after it is read
from the SPI interface.
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Due to the limitations described above, the entire logging driver is fundamentally syn-
chronous and the SD-card driver is implemented using only the FIFO extension of the SPI
interface and without DMA. Given more time, a custom FAT driver could be designed
speci�cally for this processor and incorporate the DMA controller and asynchronous op-
eration. Alternatively, a real-time operation system could be used to partially alleviate
the problem using threading. Another crude �x to introduce some asynchronism would
be to utilise long jumps to context switch out of the logging driver.

3.3.2. Event-based logging

In the logging system implemented in Escher, logging and telemetry data transmission
were coupled. The main disadvantage to this was that all data values were logged at
the same frequency and no prioritisation was possible. Although most sensors on Escher
were sampled at the same rate, this is not the case on Mujinga where some sensors such
as the laser distance sensors are sampled at around 150Hz and others such as the brake
pressure sensors are sampled at 10Hz. Thus, in contrast to Escher, Mujinga's logging
system is event-based.

Whenever a new data point is acquired or another system event occurs, a string corre-
sponding to a new line in the CSV log �le is generated and appended to a bu�er. The
following listing shows the procedure for generating the string:

// Buffers used to construct string

// ( 8) timestamp (ms)

// ( 1) ;

// ( 5) id

// ( 1) ;

// (20) value

// ( 3) \r\n\0

static char string[38], temp[21];

// Write timestamp

itoa(micros() / 1000, string);

// Write ';'

strcat(string, ";");

// Write id

itoa(id, temp);

strcat(string, temp);

// Write ';'

strcat(string, ";");
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// Write value

itoa(value, temp);

strcat(string, temp);

// Write "\r\n"

strcat(string, "\r\n");

3.3.3. Dual-core structure

Similar to the networking driver, the logging driver is also divided between both cores
since all data that needs to be logged is generated on CPU1 while CPU2 maintains the
�le system and writes to the log �le. Figure 3.5 illustrates the cross-core structure.

Logging

CPU2
• SD card driver
• FAT32 driver
• Filesystem management
• Signal CPU1 when a buffer 

has been written to file.

CPU1
• Generate log events
• Write bytes to buffer
• Signal CPU2 when buffer full
• Alternate between buffers

Buffer 1

Buffer 2

Global Shared RAM

Global Shared RAM

IPC flags used to signal 
events between 

processors

Figure 3.5.: Structure of logging driver.

Two bu�ers in shared memory (writeable by CPU1) are used to hold the next segments of
the log �le as they are generated. Once a bu�er is full an IPC �ag is used to communicate
this to CPU2 and CPU1 continues to write to the other bu�er. CPU2 writes the bu�er
out to the SD-card. Once this is complete it uses an IPC �ag to signal to CPU1 that the
bu�er can be overwritten again and the process repeats.

Usually this kind of functionality would be achieved using a ring-bu�er. However, in this
particular situation this approach does not work as well for two reasons:

Firstly, for performance reasons relating to the SD-card, performance is best when the
�le is written in consecutive blocks of 512 byte. Additionally, this reduces the overhead
produced by reading the FAT table since every block will only be accessed once.

Secondly, to optimise the performance of the FatFs library by reducing overheads, the
write operation should be invoked infrequently with large chunks of data rather than
frequently with smaller chunks of data. When using a ring-bu�er it is possible for a chunk
of data not to be stored consecutively in memory, leading to at least two invocations of
the write operation rather than one.
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3. Control System Implementation

Given these constraints, an optimally implemented and con�gured ring-bu�er would
operate in an identical way to the separate bu�ers approach explained above. Each
bu�er consists of 4kB. The trade-o� leading to this size is explained in Section 4.1.1.

3.4. External Analog-To-Digital Converter (ADC)

Some of the code for communicating with the external analog-to-digital converter was
based on the software from Escher, since the same component was used. However, the
code has been optimised to reduce communication to 32 SPI clock cycles per conversion.

At start-up the external ADC is reset to make sure it is in a known state. After initialising
the ADC, it is con�gured to use it's internal 2.5V reference and deliver 100 samples per
second. The ADC reads data form 10 channels so this sample rate provides a constant
sampling rate of 10Hz. Single-shot conversion mode is used so that the ADC provides a
single conversion before the channel is changed for the next conversion.

In the main loop the processor waits for the DRDY signal from the ADC to go low
indication that the last conversion has completed. Next, the data sequence illustrated by
Figure 3.6 delivers the 24-bit value of the conversion and starts the next conversion.

Figure 3.6.: Data �ow on the SPI bus with the external ADC.
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The following commands and data can be observed in Figure 3.6:

� MCU → ADC: (MOSI)

� 42 00: Write one byte to input multiplexer register.

� 19: New value for input multiplexer register, selecting next channel.

� 08: Start conversion command.

� ADC → MCU: (SOMI)

� 00: Status byte.

� 11 A3 5C: Value of previous conversion.

3.5. RS485 Bus
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SN65HVD7x 3.3-V Supply RS-485 With IEC ESD Protection

1

1 Features
1• Small-size VSSOP Packages Save Board Space,
or SOIC for Drop-in Compatibility

• Bus I/O Protection
– >±15 kV HBM Protection
– >±12 kV IEC 61000-4-2 Contact Discharge
– >±4 kV IEC 61000-4-4 Fast Transient Burst

• Extended Industrial Temperature Range
–40°C to 125°C

• Large Receiver Hysteresis (80 mV) for Noise
Rejection

• Low Unit-Loading Allows Over 200 Connected
Nodes

• Low Power Consumption
– Low Standby Supply Current: < 2 µA
– ICC < 1 mA Quiescent During Operation

• 5-V Tolerant Logic Inputs Compatible With
3.3-V or 5-V Controllers

• Signaling Rate Options Optimized for:
250 kbps, 20 Mbps, 50 Mbps

• Glitch Free Power-Up and Power-Down Bus
Inputs and Outputs

2 Applications
• Factory Automation
• Telecommunications Infrastructure
• Motion Control

3 Description
These devices have robust 3.3-V drivers and
receivers in a small package for demanding industrial
applications. The bus pins are robust to ESD events
with high levels of protection to Human-Body Model
and IEC Contact Discharge specifications.

Each of these devices combines a differential driver
and a differential receiver which operate from a single
3.3-V power supply. The driver differential outputs
and the receiver differential inputs are connected
internally to form a bus port suitable for half-duplex
(two-wire bus) communication. These devices feature
a wide common-mode voltage range making the
devices suitable for multi-point applications over long
cable runs. These devices are characterized from
–40°C to 125°C.

Device Information(1)
PART NUMBER PACKAGE BODY SIZE (NOM)

SN65HVD72,
SN65HVD75,
SN65HVD78

SOIC (8) 4.91 mm × 3.90 mm
VSSOP (8)

3.00 mm × 3.00 mm
VSON (8)

(1) For all available packages, see the orderable addendum at
the end of the data sheet.

Typical Application Diagram

Figure 3.7.: Structure of RS485 bus - Texas Instruments SN65HVD7x Datasheet[3]

As mentioned before, the data format used in the RS485 bus standard is identical to
standard serial (RS232) and therefore supported by the serial communication interface
(SCI) built into the micro-controller. However, RS485 uses di�erential signalling. There-
fore, a transceiver is required. Additionally, the bus structure means that only a single
device may transmit at a time. For the micro-controller this has more complicated im-
plications. The transceiver can only receive data if it is not transmitting, meaning that
the micro-controller must produce an RTS signal (RE and DE) to control which state
the transceiver is in.

Using the 16-level FIFO extension of the SCI interface, the drivers are able to operate
asynchronously by pushing up to 16 words into the FIFO and continue processing while
these are transmitted. The need to control the RTS signal would now break this asyn-
chronism since it must be asserted immediately before beginning the transmission and

27



3. Control System Implementation

de-asserted immediately after the transmission completes to allow other devices to use
the bus. Next, I will describe a solution which allows for asynchronism using interrupts.

First, the FIFO interrupt is con�gured to trigger once the FIFO is empty. However,
the interrupt triggers when the last word in the FIFO has been transferred to the trans-
mit bu�er. There is no interrupt that can trigger when the last word has been fully
transmitted. Therefore, the interrupt service routine starts a CPU timer which triggers
another interrupt after the duration it takes to transmit the �nal word. This time can
be calculated using the BAUD rate. The interrupt service routine for the timer interrupt
de-asserts the RTS signal.

3.5.1. OADM

The RS485 protocol used by the Baumer OADM laser distance sensors[14] is simple.
Each sensor has a unique ID (a single-digit non-zero number), which is con�gured during
installation. The micro-controller requests the current sensor reading from a speci�c
sensor using its ID and the sensor responds with the reading. The request consists of
four characters where * represents the ID of the desired sensor: {*M}. An example reply
from the sensor looks as follows: {*MM0448564}.

The following listing shows the update() function for the OADM driver module. A
simple state machine with two states allows the the module to be reset to the READY

state, which is also it's initial state.

void oadm_update()

{

uint16_t BUF[12];

uint32_t reading;

static uint64_t time_requested = 0;

switch (state) {

case READING:

// Check if we have received the full reply from the sensor

if (micros() - time_requested > 100000ull) {

state = READY;

return;

} else if (scic_available() < 12) {

return;

}

// Read the sensor's reply

scic_rx(BUF, 12);
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3. Control System Implementation

// Parse the response

BUF[9] = '\0';

reading = map(atoi((char *) BUF + 4), 0, 8191, 0, 120000); // um

// Emit the reading

globals_sensor_data(current_sensor == 1 ? SENSOR_DIST_RAIL_TOP_FRONT : SENSOR_DIST_RAIL_TOP_BACK, &reading);

// Read from the next sensor

current_sensor = (current_sensor % NUM_SENSORS) + 1;

// Fall through to READY case

/* no break */

case READY:

// Prepare the request

BUF[0] = '{';

BUF[1] = '0' + current_sensor;

BUF[2] = 'M';

BUF[3] = '}';

// Send the request

scic_tx(BUF, 4);

// Keep track of time

time_requested = micros();

// Go to READING state

state = READING;

break;

}

}

3.5.2. OM70

The more precise Baumer OM70 laser distance sensors[15] use di�erent RS485 bus set-
tings and also employ a more complex protocol. Nonetheless, the principal of operation
is the same except that the sensors must be put into an RS485 enabled mode using an
RS485 lock command at start-up. However, a problem arises from the reply from the
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3. Control System Implementation

sensor being signi�cantly longer. The following few lines are example responses from the
sensor.

:01A;108.648;0;2DBB\r\n

:01A;108.577;13;921D\r\n

:01A;NaN;12;B54E\r\n

The replies from this sensor are up to 22 characters long. That is more than the 16
characters that �t into the FIFO of the SCI. This is an issue, as without using the FIFO
the driver cannot operate asynchronously. Using DMA would alleviate this problem
but unfortunately the DMA controller on this micro-controller cannot access the SCI.
Furthermore, the length of the reply from the sensor is variable and so the DMA controller
would not be well suited to the task.

To prevent a FIFO over�ow, an interrupt on the receiving FIFO is con�gured to trigger
when the �rst 13 characters of a reply have been received. The interrupt service routine
then reads the �rst segment of the reply. The second segment can then be read later
without the FIFO over�owing.

3.6. CAN Bus

The CAN bus standard is designed to be deployed in automotive applications. Mujinga
incorporates multiple devices that use the CAN bus. The micro-controller conveniently
incorporates a CAN interface and the Launchpad includes a CAN transceiver, so no addi-
tional hardware was necessary to support the CAN bus. The built-in CAN interface uses
a dedicated Message RAM to store message objects that can be con�gured to accept CAN
messages with an optional CAN ID �lter or to hold messages that should be transmitted
on the CAN bus. The CAN interface on the micro-controller handles bus arbitration
and automatic retransmission so the application only needs to con�gure message objects
with the required properties. To further simplify development using the CAN interface
I used a driver library provided by Texas Instruments as part of ControlSUITE[9].

3.6.1. Inverters

The motor-controllers (inverters) only use two CAN IDs each: one to receive and one to
transmit CAN messages. The details of what message is being transmitted is contained
within the message. This is somewhat in contradiction to the original CAN speci�cation
where the CAN ID should identify the type of message as it is used as the priority during
bus arbitration.
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3. Control System Implementation

The driver for the inverters con�gures two message objects for each inverter con�gured
to accept only the corresponding message IDs. The driver then uses the new data reg-
ister of the CAN interface to check if a new message has been received in the receiving
message objects. To send a message to the inverters, it is simply written into the appro-
priate transmitting message object and con�gured to be retransmitted until the inverter
acknowledges the message.

To kick-start communication, the control panel sends a "Clear inverter faults" command.
This leads to the driver transmitting a sequence of messages to each inverter. The mes-
sages complete two tasks: First, clear any faults generated by previous error conditions.
Secondly, con�gure the inverter to regularly send the telemetry listed in Section 2.2.
Most measurements are transmitted every 10 milliseconds.

3.6.2. Battery Management Systems (BMS)

Unlike the inverters the Battery Management Systems adhere to the CANopen standard[16].
The BMSs are more passive than the inverters and do not require con�guration. They
simply start transmitting telemetry data at start-up. CANopen messages can be identi-
�ed by their CAN ID but still contain additional identi�cation information in the mes-
sage.

The driver for the BMSs con�gures one message object for each BMS and for each
message that needs to be received. Each message object is con�gured to only accept the
appropriate message ID. Similarly to the inverter driver it uses the new data register
of the CAN interface to read message objects whenever new data has been received.
The frequency and types of data is hard-coded into the BMS �rmware and cannot be
con�gured without intervention from the manufacturer.

3.7. Navigation algorithm

The task of the navigation algorithm is to ensure that the control system can determine
the location of the pod and it's velocity.

The primary navigational sensors are optical contrast sensors that recognise optical mark-
ings placed in 30m intervals along the track. Although the inverters provide rotational
speed measurements from the motors (and therefore the wheels), this on it's own would
not be a su�cient. It is not unlikely, that despite the traction controllers in�uence the
wheels could slip during acceleration. In the event of slipping on the wheels the data
from the motors becomes useless for navigational purposes. Furthermore, from a safety
point of view, it is not necessary to continuously update the pods position or velocity.
The control system only needs to know when the pod has exceeded a pre-de�ned dis-
tance in order to engage the brakes at the correct time. Nonetheless, the rotational speed
measurements do in�uence the navigation algorithm to some extent.
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Due to the importance of correct navigation and because only one type of sensor is used
as a primary input, the system must incorporate fault detection and recovery. The pod
has two laser contrast sensors: one at the front and one at the back. This means that
at most one laser sensor may miss an optical marking and in almost all situations the
system will be able to detect this fault and recover. This is implemented by observing
the order in which the sensors trigger. The sensors provide digital output signals that
go high when an optical marking is detected, which triggers an interrupt. The following
listing shows the interrupt service routine for the front sensor:

__interrupt void tape_detection_front_isr(void)

{

uint64_t now = micros();

uint64_t min_time_interval = nav_tape_min_time_interval();

if (now > tape_detection_time_front + min_time_interval) {

last_tape_detection_time = tape_detection_time_front;

tape_detection_time_front = now;

tape_count_front++;

// Check if the last tape was missed at the back

if (tape_count_front > tape_count_back + 1) {

tape_count_back++;

tape_miss_count++;

}

tape_detected = 1;

}

EALLOW;

PieCtrlRegs.PIEACK.all |= PIEACK_GROUP1; // ACK the interrupt

EDIS;

}

The interrupt service routine for the back sensor is analogous. By checking if the number
of optical markings detected at the front (tape_count_front) is at least two greater than
at the back (tape_count_back), the system can determine if the back sensor missed the
previous optical marking.

Should the optical marking be dirty it is possible that the sensor triggers twice or more.
To prevent the algorithm from registering this as several markings, it checks if a min-
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imum amount of time has passed since the last trigger. This time period is calculated
using a call to nav_tape_min_time_interval() where the average of all rotational speed
measurements is used to estimate the amount of time the tape sensor is over an optical
marking in order to accurately reject false triggers until the optical marking has been
passed. The following listing shows this process:

uint64_t nav_tape_min_time_interval()

{

// Get average of wheel speeds

int32_t speed = -globals.inverter_fl_speed;

speed += globals.inverter_fr_speed;

speed += -globals.inverter_bl_speed;

speed += globals.inverter_br_speed;

speed /= 4;

// Convert speed from rpm to mm/s

speed *= CONFIG_NAV_WHEEL_CIRCUMFERENCE;

speed /= 60;

// Enforce minimum speed

if (speed < 1000) {

speed = 1000;

}

// Calculate the time interval (us) between the two tape sensors

uint64_t time = 1000000ull * CONFIG_NAV_TAPE_WIDTH;

time /= speed;

// Add a safety margin

return 8 * time;

}

To protect against noise, the input quali�cation built into the micro-controller is con-
�gured to make sure the signal is stable for 15,3 microseconds before it can lead to an
interrupt.

Once the time of detection of an optical marking has been recorded, the location and
velocity of the pod can easily be calculated and used to make control decisions and modify
the global state.
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3.8. State Diagram

As a requirement for the competition, the global control algorithm must be implemented
as a �nite state machine (FSM). The state diagram is checked and tested during the
competition. Therefore, the FSM is designed with simplicity in mind and with the least
number of automatic transitions in order to reduce the amount of tests necessary to
demonstrate correctness.

Manual

IDLE

RFE = off 
RUN = off 

reduced emergency conditions 

EMERGENCY

RFE = off 
RUN = off 

Engage brakes 

High-side = off 
Pre-charge = off 
Low-side = off 

Manual 

READY

RFE = on

progression > RUN_DIST 

brake pressure < MIN_BRAKE_PRESSURE 

run duration > MAX_RUN_DURATION 

RUN

RUN = on 

Motors accelerate (CAN) 

velocity == 0 

BRAKING

Engage brakes 

RUN = off 

Manual 

STOP

RFE = off 

State Diagram

Manual controls
Aux. Power

Pre-charge

High Voltage Power

Dis-/Engage brakes

Low Speed fwd/back/stop [READY only]

Clear inverter fault

Reset status

Emergency conditions
Inverter BTB signal while inverters on (!)
Bad inverter status

CAN communication timeout (inverter & BMS)

Battery enclosure pressure is too low

Battery current, isolation, over-temperature (!)
Brake piston pressure too high [only RUN]

Navigation failure

Assertion failure (!)
Networking failure (!)

       (!) These conditions are always active

Manual 

Manual

Emergency condition 

Manual 

Signals
RFE: Enable signal for the inverters (safety).

RUN: Enables high voltage power from the

inverter to the motors.

Figure 3.8.: State diagram of the global �nite state machine.
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Figure 3.8 shows all states and state transitions. Any state transitions that are not listed
in Figure 3.8 are illegal and cannot be executed. The EMERGENCY state can be entered from
any other state automatically if an emergency condition occurs or by a manual command
form the control panel. All state transitions labelled "Manual" are also executed using a
command from the control panel. Additional safety conditions that may prevent manual
state transitions apply in some cases.

The IDLE state is intended as the default state when the pod is powered on and stationary.
Some emergency conditions are not active in this state as the causes may be cleared by
manual intervention with the pod, such as pumping up the brake system to nominal
pressure levels.

A nominal run of the pod would consist of the following sequence of states: READY →
RUN → BRAKING → STOP. In order to begin a run, the system must transition into the
READY state, insuring that the all emergency conditions are negative and the pod is
healthy before proceeding. The RUN state represents the acceleration phase of a run and
is exited when the pod reaches a pre-de�ned location, brake failure on at least on of the
braking systems appears to be imminent or a pre-de�ned maximum duration has been
exceeded. Once transitioned to the BRAKING state, the motors are disabled by turning
o� the RUN signal and the brakes are engaged. Once the pod has reached a full stop,
the pod transitions into the STOP state.

Although the FSM covers all safety critical actions, several other controls are left as man-
ual controls to the user in favour of a simpler FSM. However, in several cases automatic
safety checks are still in place that prevent manual actions that would lead to unsafe
circumstances.

3.9. Control Law Accelerator (CLA)

As mentioned in Section 3.1, two controllers regulating traction and yaw need to be
executed at regular intervals. In order to provide an isolated environment and improve
performance, these controllers execute on the CLA. The CLA is a co-processor with a
separate instruction set that executes in parallel to the CPU at the same frequency. The
CLA is con�gured with up to eight task vectors (function pointers). A task can then be
triggered by a peripheral or by software on the CPU. Once triggered, the task runs until
it reaches an MSTOP instruction.

Blocks of the CPU's dedicated RAM can be con�gured as program and data space for the
CLA. Texas Instruments provides a C compiler for the CLA instruction set. However, the
C compiler only supports a subset of C. The main di�erence being, that output programs
do not use a stack. Instead a scratch-pad concept is employed. As a result recursion is
not supported. Even so, the compiler is su�ciently capable for control applications.
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In order to pass input arguments to the CLA and return outputs to the CPU, the CLA
and CPU share a Message RAM consisting of two 128 word segments. One is writeable
only by the CPU, the other is only writeable by the CLA. Variables can be allocated in
these segments using a #pragma DATA_SECTION() directive and then linked in the CPU
and CLA code at compile time. Figure 3.9 illustrates this structure.

CLA tasks

CLA
• Run task to completion
• Can use own data space to 

store data

CPU1
• Prepare input to CLA task
• Trigger CLA task
• Implement output from CLA 

task

Input variables

Output variables

CPU to CLA Msg RAM

CLA to CPU Msg RAM

Figure 3.9.: Communication of inputs and outputs for CLA tasks.

3.10. Debugging

During development it can be useful to print messages to a console. For this purpose I
con�gured a third SCI interface on the micro-controller that is connected to a USB-to-
Serial converter on the XDS100v2 On-Board Debug Probe of the Launchpad. Using this
serial interface the micro-controller can print messages to a host computer. However, in
order to make use of support functions such as printf() the default Runtime Support
Library requires a lot of code and the use of a heap. To avoid these heavy functions I
instead used the tinyprintf library[17] which is speci�cally designed for embedded systems
and implements all standard functions such as printf().

Printing messages to the console is synchronous and blocking. However, this is acceptable
since printing is not intended for production and is removed in the �nal build.

While CPU1 can easily output messages over serial, as it is the master of the SCI pe-
ripheral, the same is not true for CPU2. Instead of switching the master of the SCI,
which would be prone to glitches, CPU2 uses IPC message registers to pass characters
to CPU1. An IPC �ag is then con�gured to cause an interrupt on CPU1. The interrupt
service routine then prints the character received from CPU2. This mechanism provides
both cores with the ability to print debug messages to a console. However, it is important
to keep in mind, that this mechanism does not provide any form of locking.

3.11. Unit Testing

In order to ensure correctness, extensive unit tests are employed to test all critical control
algorithms and any other modules that can reasonably be tested using software tests.
The implemented unit tests speci�cally also test limits and edge cases that could lead
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to numerical errors such as integer over�ows and under�ows. If enabled at compile-
time, unit tests execute just before the main loop is entered. However, unit tests are not
intended to execute in production, as they may lead to an undesired state and recon�gure
some parts of the system for testing.
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Chapter 4
Experimental Results

This chapter will show the evaluation of the implemented control system in terms of
performance analysis in the lab and in-�eld testing prior to and during the Hyperloop
Pod Competition at SpaceX's headquarters in Los Angeles, California. In particular, the
performance evaluation of the logging system and networking driver will be discussed,
revealing an interesting trade-o� between memory usage and performance. Furthermore,
the result of the competition will be discussed with emphasis on the impact of the control
system.

4.1. Performance Evaluation

4.1.1. Logging and SD-card driver

Experimental evaluation of the SD-card driver by visualising write operations using an
oscilloscope attached to the SPI bus revealed an important trade-o� that greatly impacts
the performance of the logging driver. Although many overheads are introduced by
the FAT �le system, the SD card also introduces an overhead during read and write
operations. As write operations are more relevant in this particular application the
following will examine only write operations.

Figure 4.1 illustrates the initial steps of writing to an SD-card. First a write command is
issued. This is then followed by one or more data packets consisting of a data token, 1-
2048 bytes of data and two CRC bytes. Between the cursors in Figure 4.1 one data packet
is transmitted. Once all the data packets have been transmitted, a write termination
command is transmitted. This last command is omitted if a single block write operation
is used.

38



4. Experimental Results

Figure 4.1.: Write command and data packet on SPI bus with SD card.

Between each data packet and after the full sequence of packets and commands, the SD
card enters a busy state where it is processing the written data. As Figure 4.2 shows,
the busy time after the full sequence (or rather after the write termination command) is
particularly long in relation to the transmission time of a single data packet.
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Figure 4.2.: Wait time after writing data packet to SD card.

Further testing revealed that, while the busy time between data packets is very small, the
total busy time is almost completely dominated by the busy time at the end of a write
operation. This is further veri�ed by another test where chunks of di�erent sizes are
repeatedly written to a �le in the FAT �le system and the data rate observed. Table 4.1
shows the results of this test. As can be seen from Figure 4.4 the write speed behaves
almost linearly compared to the chunk size.

Table 4.1.: Write speeds for chunks of di�erent sizes.

Chunk size Average data-rate

256 bytes 21 kB/s
512 bytes 41 kB/s
1024 bytes 80 kB/s
2048 bytes 148 kB/s
4096 bytes 254 kB/s
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Figure 4.3.: Write speeds for chunks of di�erent sizes.

Given these results we have a memory/data-rate trade-o�. Memory is limited on the
micro-controller but we also want to maximise the amount of data that can be logged.
In-�eld experimentation showed that under most circumstances write bu�ers of 2048
bytes are su�cient to achieve the data-rate necessary to log all sensor data. Nonetheless,
we ended up using bu�ers of 4096 bytes to insure that no data would be lost.

Comparison to Escher

The most important objective in comparison to Escher was to improve the logging system.
Already by introducing event-based logging more infrequent measurements can be logged
less than more frequent measurements. As a result, higher data rates for more important
data can be achieved by reducing the bandwidth used by less important measurements.
More dramatically, the redesigned system logged on average 1355 data points per second
at a data-rate of 29 kB/s, while the system on Escher achieved only a constant rate of
173,5 data points per second.
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Figure 4.4.: Average number of logged data points per second.

4.1.2. Networking

Using an oscilloscope the SPI bus with the micro-controller and Ethernet controller can
be monitored. Figures 4.5 and 4.6 visualise the sequence of commands necessary for
sending and receiving short 12 byte network packets. In order to send a packet, the micro-
controller must �rst read the write pointer it should use from the Ethernet controller.
Then it can write to the Ethernet controller's packet RAM at the write address. It must
then update the write pointer so the Ethernet controller knows the length of the packet
and �nally con�rm the packet using a send command. The sequence for receiving packets
is analogous. Notice however, that the process is triggered by the interrupt signal from
the Ethernet controller.
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Figure 4.5.: Command sequence for sending a network packet on SPI bus.

From Figure 4.5 we can see that it takes only 39 microseconds to complete all commands
necessary to send a network packet of this size at maximum clock rate supported by
the SPI interface (12,5 MHz). The use of the DMA controller leads to uninterrupted
transmission of each command on the bus. Although the demonstrated performance is
more than fast enough for this application, the driver could still be optimised to reduce
the time between commands. Some of the computation necessary for the next command
is performed after the previous command is transmitted. Although this would increase
memory usage, it could be performed while the previous command is still transmitting.
On the other hand, for longer packets the time is dominated by the transmission subse-
quence labelled "write packet" in Figure 4.5.

The same optimisation could be applied to the reception of network packets but again
Figure 4.6 shows that the full sequence only takes 47 microseconds, which is su�cient
for this application.
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Figure 4.6.: Command sequence for receiving a network packet on SPI bus.

4.2. In-Field Evaluation and Competition

The control system was implemented speci�cally for the Hyperloop Pod Student Com-
petition. It was extensively tested before the competition during functional tests and on
a test 150m test track in Switzerland. During the competition the software was tested in
several tests, most notably the functional test, navigation test and state diagram test.

4.2.1. Pre-competition testing

After checking the correct operation of all sensors and actuators in conjunction with the
software, we checked that all emergency conditions and safety features worked correctly.
Next, full pod operation was tested in a vacuum chamber. We were successfully able to
spin up the motors in vacuum and all components operated nominally during the test.
The pressurized battery compartments remained pressurized and the cells were therefore
not damaged.

In addition to the vacuum chamber test, the team was able to use a 150m test track
designed to match the speci�cations of the test tube at the competition. We completed
several runs demonstrating correct operation of the navigational sensors, the navigation
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algorithm, the control of the inverters using both speed and torque commands, the control
of the brake system and telemetry transmission and logging. Further test runs focused
on applying maximal acceleration over short distances in order to �ne-tune traction
control.

4.2.2. Competition

Figure 4.7.: Picture of Mujinga without shell in front of the Hyperloop test tube in Los
Angeles.

Throughout the competition week the pod was subjected to a wide range of tests. Three
tests speci�cally target the control software developed in this thesis.

First, the functional test ensures that after power-on the pod is in a safe state and
telemetry is received with nominal values. During this test the team also demonstrated
correct operation of all safety-critical pod functions such as the brakes from software and
using the control panel to command the pod.
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Next, the navigation test veri�es that the navigational mechanisms built into the software
work correctly and the level of fault tolerance is assessed. In order to show correct
functionality of the navigational algorithm, all possible scenarios were simulated using
fake optical markings while the pod remained stationary and the software responses were
observed using the telemetry data visualised in the control panel.

Finally, the state diagram test consists of verifying the pod operates according to the state
diagram (Figure 3.8). Essentially, this test checks that the global �nite state machine
is correctly implemented. To demonstrate this, all automatic transitions are tested by
simulating all possible causes for the transition. For example, the transition RUN →
BRAKING should occur after the pod has travelled a pre-de�ned distance. This can be
simulated by passing fake optical markings in front of the laser contrast sensors.

Figure 4.8.: Picture of Mujinga's shell in front of the tent where the team worked on the
pod during testing week at SpaceX.

With all these tests passed, the team had actually gained a decent lead compared to the
other teams in the competition. The next test for the pod was the vacuum chamber
test, where the full pod is placed in a large vacuum chamber. Although this test had
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been previously carried out successfully in Switzerland, the pod su�ered a severe failure
during this test preventing the team from advancing to the �nals of the competition.

Shortly after enabling the high-voltage systems in vacuum, a loss of communications
occurred. After re-pressurising the vacuum chamber it was immediately possible to see
that the low-voltage electronics had been fatally damaged. Further investigation revealed,
that the high-voltage batteries had been short circuited. Surprisingly, the low-voltage
systems continued to log data for a full second after the failure. After analysing the data,
the failure could be narrowed down to one of the inverters. A manufacturing fault caused
arcing to occur between the two battery poles. The arcing damaged the inverter, portions
of the low-voltage electronics, the low-voltage battery and both high-voltage batteries.
Although we were able to repair all other components, the high-voltage battery cells were
too severely damaged from the over-current to be safely used any further.
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Chapter 5
Conclusion

The objective of this bachelor thesis was to design a control system for a prototype
Hyperloop pod competing in SpaceX's 2018 Hyperloop Pod Competition. The safety
and therefore the correctness and reliability of the system was the highest priority. The
system had to be robust and be able to execute many runs of the pod without needing
intervention. The implementation also had to improve on the software of the previous
pod Escher, in particular by simplifying the system, reducing bottlenecks, being able to
log signi�cantly more data and being designed from the ground up with testability in
mind.

The platform chosen for this project was based on a Texas Instruments Launchpad to-
gether with a custom interface PCB. The software makes use of both CPUs of the dual-
core micro-controller and the built-in Control Law Accelerator for parallel processing. No
real-time operating system was used. Instead, the system is designed to be fundamen-
tally asynchronous. Modular software design and a centralized data-�ow make it easily
maintainable and extendible.

To provide remote telemetry data and control, a protocol was designed that is resistant
to unstable network connections and packet loss. An external Ethernet Controller allows
the computational e�ort of running a full network stack to be o�oaded from the CPU.
Communication with the Ethernet Controller runs over an SPI bus and the driver makes
use of DMA to provide near optimal performance. The networking driver is a dual-core
implementation and uses IPC �ags to synchronise communication between CPU cores.
Experimental evaluation showed that the performance far surpassed the requirements of
the project.

In order to log data to an SD card, several �le systems were considered. In order to
simplify retrieving log data as much as possible, the FAT �le system was chosen. To this
end, an SD-Card driver was implemented using the FIFO extension of the SPI interface.
Event-based logging allows for variable and mixed data-rates. Similar to the networking
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5. Conclusion

driver, logging is a dual-core process using IPC �ags for synchronisation. Experimental
evaluation revealed a memory/data-rate trade-o� where more memory usage can lead to
increased data-rates. On average though, the logging system was able to log 7,8 times
more data than the logging system on Escher. In order to visualise large amounts of log
data rapidly and e�ciently, a custom plotting application was developed.

Although most sensors were chosen with digital outputs, some produce analog output
signals. These are read using an external analog to digital converter for particularly
accurate readings. The driver for the external ADC is highly optimized and operates
with optimal communication. Communication with the laser distance sensors runs over
two RS485 buses, which allow several sensors to share a single bus. The drivers use the
FIFO extension of the micro-controller's serial interface for e�cient and asynchronous
operation. A sequence of interrupts allow the RTS signal to be controlled asynchronously.
Some remaining devices communicate using a CAN bus. The micro-controller's built-in
CAN interface and a driver library from Texas Instruments again allowed for an e�cient
and asynchronous implementation.

A robust navigation algorithm was implemented with failure recovery and �ltering to
allow reliable, safe and autonomous control of the pod. A global �nite state machine
was designed and implemented to control all safety critical processes and incorporates
all checks necessary to guarantee safety of the vehicle. The states and state transitions
are optimised for testability, by reducing the number of automatic transitions to a mini-
mum.

In conclusion, the control system developed in this thesis was able to meet all design
objectives. Performance was evaluated experimentally and surpassed the requirements
of the project. The system was successfully deployed and used to control Mujinga before
and during the 2018 Hyperloop Pod Competition hosted by SpaceX in Los Angeles.
Although the team was not able to advance to the �nals due to a manufacturing fault,
the system performed perfectly during tests and therefore can be considered a success.

5.1. Outlook

The control software was designed to be modular and easily extendible, so it will serve as a
basis for future systems as Swissloop continues to develop Hyperloop technology, striving
for e�cient high-speed transport. While Mujinga does not yet represent a viable pod
for a full-scale commercial Hyperloop system, it tackles some of the challenges relating
to high-speed transport in a low-pressure environment. Ongoing work at Swissloop will
allow for future iterations that will become increasingly close to a full-scale solution.

49



Appendix A
Telemetry Frame

struct telemetry_frame {

uint32_t dist_rail_top_front; // um

uint32_t dist_rail_top_back; // um

uint32_t inverter_fl_status; // enum

uint32_t inverter_fr_status; // enum

uint32_t inverter_bl_status; // enum

uint32_t inverter_br_status; // enum

uint16_t state; // enum

uint16_t emergency_reason; // enum

uint16_t brakes_engaged; // boolean

uint16_t log_file_num; // number

uint16_t log_discarded_data; // boolean

uint16_t tape_count; // number

uint16_t tape_miss_count; // number

uint16_t progression; // m

uint16_t velocity; // km/h

uint16_t max_velocity; // km/h

uint16_t run_timer; // ms

uint16_t inverter_AUX; // boolean

uint16_t inverter_RFE; // boolean

uint16_t inverter_RUN; // boolean

int16_t inverter_fl_torque; // %
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A. Telemetry Frame

int16_t inverter_fr_torque; // %

int16_t inverter_bl_torque; // %

int16_t inverter_br_torque; // %

int16_t inverter_fl_speed; // rpm

int16_t inverter_fl_motor_temp; // °C

int16_t inverter_fl_igbt_temp; // °C

int16_t inverter_fl_motor_current; // A

int16_t inverter_fl_dc_bus; // V

int16_t inverter_fr_speed; // rpm

int16_t inverter_fr_motor_temp; // °C

int16_t inverter_fr_igbt_temp; // °C

int16_t inverter_fr_motor_current; // A

int16_t inverter_fr_dc_bus; // V

int16_t inverter_bl_speed; // rpm

int16_t inverter_bl_motor_temp; // °C

int16_t inverter_bl_igbt_temp; // °C

int16_t inverter_bl_motor_current; // A

int16_t inverter_bl_dc_bus; // V

int16_t inverter_br_speed; // rpm

int16_t inverter_br_motor_temp; // °C

int16_t inverter_br_igbt_temp; // °C

int16_t inverter_br_motor_current; // A

int16_t inverter_br_dc_bus; // V

uint16_t hv_bat_BMS; // boolean

uint16_t hv_bat_HS; // boolean

uint16_t hv_bat_PRE; // boolean

uint16_t hv_bat_LS; // boolean

uint16_t hv_bat_l_isolation; // boolean

int16_t hv_bat_l_voltage; // V

int16_t hv_bat_l_min_voltage; // mV

int16_t hv_bat_l_current; // A

int16_t hv_bat_l_max_cell_temp; // °C

uint16_t hv_bat_r_isolation; // boolean

int16_t hv_bat_r_voltage; // V

int16_t hv_bat_r_min_voltage; // mV

int16_t hv_bat_r_current; // A

int16_t hv_bat_r_max_cell_temp; // °C

uint16_t lv_bat_current; // mA

uint16_t lv_bat_voltage; // mV
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A. Telemetry Frame

uint16_t lv_bat_capacity_used; // mAh

uint16_t dist_rail_side_front; // mm

uint16_t dist_rail_side_back; // mm

uint16_t press_brake_block_front; // bar

uint16_t press_brake_block_back; // bar

uint16_t press_brake_piston_front; // bar

uint16_t press_brake_piston_back; // bar

uint16_t press_ambient; // mbar

uint16_t press_hv_bat_left; // mbar

uint16_t press_hv_bat_right; // mbar

};
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Appendix B
Logging event ID enumeration

enum log_event {

/*

* Pod events

*/

LOG_EVENT_STATE_TRANSITION = 1, // enum emergency_reason

LOG_EVENT_EMERGENCY, // enum emergency_reason

/*

* Inverters

*/

LOG_EVENT_INVERTER_AUX, // boolean

LOG_EVENT_INVERTER_RFE, // boolean

LOG_EVENT_INVERTER_RUN, // boolean

LOG_EVENT_INVERTER_CLEAR_FAULT, // -

LOG_EVENT_INVERTER_FL_SET_TORQUE, // %

LOG_EVENT_INVERTER_FR_SET_TORQUE, // %

LOG_EVENT_INVERTER_BL_SET_TORQUE, // %

LOG_EVENT_INVERTER_BR_SET_TORQUE, // %

LOG_EVENT_INVERTER_SET_SPEED, // %

LOG_EVENT_INVERTER_FL_STATUS, // enum

LOG_EVENT_INVERTER_FL_SPEED, // rpm

LOG_EVENT_INVERTER_FL_MOTOR_TEMP, // °C

LOG_EVENT_INVERTER_FL_IGBT_TEMP, // °C

LOG_EVENT_INVERTER_FL_MOTOR_CURRENT,// A

LOG_EVENT_INVERTER_FL_DC_BUS, // V

LOG_EVENT_INVERTER_FR_STATUS, // enum
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B. Logging event ID enumeration

LOG_EVENT_INVERTER_FR_SPEED, // rpm

LOG_EVENT_INVERTER_FR_MOTOR_TEMP, // °C

LOG_EVENT_INVERTER_FR_IGBT_TEMP, // °C

LOG_EVENT_INVERTER_FR_MOTOR_CURRENT,// A

LOG_EVENT_INVERTER_FR_DC_BUS, // V

LOG_EVENT_INVERTER_BL_STATUS, // enum

LOG_EVENT_INVERTER_BL_SPEED, // rpm

LOG_EVENT_INVERTER_BL_MOTOR_TEMP, // °C

LOG_EVENT_INVERTER_BL_IGBT_TEMP, // °C

LOG_EVENT_INVERTER_BL_MOTOR_CURRENT,// A

LOG_EVENT_INVERTER_BL_DC_BUS, // V

LOG_EVENT_INVERTER_BR_STATUS, // enum

LOG_EVENT_INVERTER_BR_SPEED, // rpm

LOG_EVENT_INVERTER_BR_MOTOR_TEMP, // °C

LOG_EVENT_INVERTER_BR_IGBT_TEMP, // °C

LOG_EVENT_INVERTER_BR_MOTOR_CURRENT,// A

LOG_EVENT_INVERTER_BR_DC_BUS, // V

/*

* Battery Management System

*/

LOG_EVENT_BMS_LS, // boolean

LOG_EVENT_BMS_PRE, // boolean

LOG_EVENT_BMS_HS, // boolean

/*

* High voltage batteries

*/

LOG_EVENT_HV_BAT_L_VOLTAGE, // V

LOG_EVENT_HV_BAT_L_MIN_VOLTAGE, // mV

LOG_EVENT_HV_BAT_L_CURRENT, // A

LOG_EVENT_HV_BAT_L_MAX_CELL_TEMP, // °C

LOG_EVENT_HV_BAT_R_VOLTAGE, // V

LOG_EVENT_HV_BAT_R_MIN_VOLTAGE, // mV

LOG_EVENT_HV_BAT_R_CURRENT, // A

LOG_EVENT_HV_BAT_R_MAX_CELL_TEMP, // °C

/*

* Brake event

*/

LOG_EVENT_BRAKES_ENGAGED, // boolean

/*
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B. Logging event ID enumeration

* Navigation

*/

LOG_EVENT_TAPES_DETECTED, // number

LOG_EVENT_TAPES_MISSED, // number

LOG_EVENT_PROGRESSION, // mm

LOG_EVENT_VELOCITY, // mm/s

/*

* Low voltage battery

*/

LOG_EVENT_LV_BAT_CURRENT, // mA

LOG_EVENT_LV_BAT_VOLTAGE, // mV

LOG_EVENT_LV_BAT_CAPACITY_USED, // mAh

/*

* OM70 laser sensors

*/

LOG_EVENT_DIST_RAIL_SIDE_FRONT, // um

LOG_EVENT_DIST_RAIL_SIDE_BACK, // um

/*

* OADM laser sensors

*/

LOG_EVENT_DIST_RAIL_TOP_FRONT, // um

LOG_EVENT_DIST_RAIL_TOP_BACK, // um

/*

* PBM4 pressure sensors

*/

LOG_EVENT_PRESS_BRAKE_BLOCK_FRONT, // bar

LOG_EVENT_PRESS_BRAKE_BLOCK_BACK, // bar

LOG_EVENT_PRESS_BRAKE_PISTON_FRONT, // bar

LOG_EVENT_PRESS_BRAKE_PISTON_BACK, // bar

/*

* PBMN pressure sensors

*/

LOG_EVENT_PRESS_AMBIENT, // mbar

LOG_EVENT_PRESS_HV_BAT_LEFT, // mbar

LOG_EVENT_PRESS_HV_BAT_RIGHT, // mbar

/*

* Controller outputs
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B. Logging event ID enumeration

*/

LOG_EVENT_YAW_MOMENTUM = 400, // mNm

LOG_EVENT_TRACTION_TORQUE_FL, // number

LOG_EVENT_TRACTION_TORQUE_FR, // number

LOG_EVENT_TRACTION_TORQUE_BL, // number

LOG_EVENT_TRACTION_TORQUE_BR, // number

};
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