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Abstract

Abstract

Since 2016 Swissloop has designed, built, and tested prototype pods for Hyperloop systems.
In 2019/2020 a novel Linear Induction Motor (LIM) was designed to be built into the newest
prototype. Sadly the Hyperloop Pod Competition 2020 was canceled and this led to the
production of a downsized version of this LIM. In this thesis this downsized LIM is simulated
and the different simulation-types are compared and evaluated. In a second step, simulations
of a pole-pitch-transition are done, what the initial LIM was designed for. This allows for lower
frequencies at high speeds. Finally, the possibility of magnetic levitation with the designed
LIM is investigated. The results provide valuable information for the development of the next
generation LIM for Swissloop prototypes.

Due to unfortunate circumstances, the part related to testing the BabyLIM could not be
addressed and alternatively the topic of levitation with a LIM has been added.
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ETH Zürich 8 Matthias Strässle
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Contents
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Introduction

1 Introduction

One of the biggest challenges for this generation is the reduction of greenhouse gas emissions.
Transportation plays a big part in carbon emission. Close to 25 % of greenhouse gas emissions
in the EU came from this sector [1]. As combustion engine cars and planes are nearly as efficient
as they can possibly be, new ideas to revolutionize this sector are needed.
The idea to get from one point to another faster has always been interesting to humans. It
led to the invention of the wheel in the early days and followed up with trains and cars. With
increasing technologies and faster speeds one had to include drag into the equation. Nowadays,
the drag produced by air is one of the limiting factors for how fast a car can drive. Even though
air drag can be reduced efficiently with aerodynamics, it is not possible to reduce it to zero.
The idea to reduce drag with vacuum-based transportation dates back to the 19th century. At
that time technology wasn’t advanced enough to construct such a system and therefore the
idea was never fully realized [2].

In 2013 Elon Musk revived the concept of vacuum-based transportation with his white paper
”Hyperloop Alpha” [3]. The concept thereby is to place a pod (transport capsule) in a vacuum
tube and accelerate it to a velocity near the speed of sound. While a perfect vacuum is difficult
to create and maintain, a low-pressure environment is proposed. To reduce drag further, the
concept calls for contactless levitation, stabilization, and propulsion methods. Unfortunately,
industry did not follow the call and therefore Elon Musk launched the ”SpaceX Hyperloop
Pod Competition” in 2015 [4]. In this gathering, student teams from all over the world design
and build a pod to do research on the hyperloop concept. After competing in a series of tests,
the best teams get to race their pods against each other in the 1.2 km vacuum test track in
Hawthrone, California. The goal of this competition is to promote research in vacuum-based
transportation technology.

1.1 Linear Induction Motor

A powerful contactless propulsion system is the LIM. With this technology it is possible to
perform a translation without the usual rotary elements and the friction, that comes with it, in
typical electric motors. The full theory for LIM is given in chapter 2. Nevertheless, a small
introduction into the working principle of such a motor will be given here to understand the
challenges that come with it.

A LIM can be imagined as a conventional rotary asynchronous machine cut to the center and
bent straight. A LIM of this form with one primary (stator) and one secondary (rotor) is called
Single-Sided Linear Induction Motor (SSLIM) (Fig. 1.1a). On the other side of the secondary
an iron sheet is placed to better guide the fields. By adding a second primary instead of the
iron backplate the Magnetomotive Force (MMF) can be doubled and with it the generated
thrust. Such a design is called a Double-Sided Linear Induction Motor (DSLIM) (Fig. 1.1b).
In order to move the primary or secondary, one has to be longer than the other. Therefore,
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(a) 2D schematic of a SSLIM
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(b) 2D schematic of a DSLIM

Figure 1.1: Two design types of a short primary LIM with the corresponding current phases
when all coils are wounded in the same direction.

two basic types of LIMs can be distinguished: a short primary and a short secondary. Both
design types can either be a SSLIM or a DSLIM. This thesis will focus on short primary motors
even though most of the calculations can directly be transferred to a short secondary design by
minor changes.

The primary side of the LIM consists of an iron core, usually made of sheets to reduce losses
due to eddy currents, and multiple coils. By introducing a time varying sinusoidal three-phase
current into the coils a sinusoidal time-varying moving magnetic field is produced. The number
of full sinusoidal cycles and accordingly the number of north-south-poles is called pole-pairs p.
With time the magnetic field is moving along the primary side with a speed of

vs = 2τpfp , (1.1)

where the pole-pitch τp is the distance between one north- and south-pole and fp is the frequency
of the primary three-phase current [5]. vs is called the synchronous speed. Thrust is only
generated if the speed of the LIM is smaller than this synchronous speed. The typical thrust
curve of an asynchronous machine in respect to speed and slip s is given in Fig. 1.2. The slip
indicates how much the speed differs from the synchronous speed and is defined as

s = vs − v
vs

, (1.2)

with the synchronous speed vs and the mechanical speed v at which the motor is currently
moving [6].

1.2 Swissloop

Swissloop [7] is a student-run organization at ETH founded in 2016 that specialized in the design
of vacuum transportation pods and have successfully participated in the SpaceX Hyperloop Pod
Competition since 2017. In 2019, Swissloop was amongst the first to implement a LIM into their
pod named Claude Nicollier. With this motor and a custom-designed inverter they achieved
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Figure 1.2: Thrust of an asynchronous machine for a constant frequency [6].

over 250 km h−1 and got 2nd in the competition. Additionally, they received an innovation
award for the implementation of those technologies.

1.2.1 Pod Propulsion 2019

For its propulsion design of 2019 Swissloop used a motor with two primary sides placed on the
pod, while the secondary is a fixed aluminum I-beam in the vacuum test track. The motor is
therefore a short primary DSLIM shown in Fig. 1.3 and will further on be called LIM19.

LIM19 consists of 6 pole-pairs. The two primary sides are handled separately by an individual
three-phase inverter and the phases are connected in a star-topology. This topology is shown in
Fig. 1.4. For simplicity the two primary sides of the LIM are drawn as three inductors connected

(a) Schematic with an I-beam as secondary in
the middle (b) LIM19 assembled in the pod

Figure 1.3: LIM of the Swissloop propulsion system 2019.
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+dcV

−dcV

left LIM right LIM

Figure 1.4: Inverter topology 2019

in star. To ensure that both sides are driven by the same current, a single microcontroller was
used to send the same Pulse Width Modulation (PWM) signals to both inverters [8].

Several points for improvement for the LIM19 were identified following the final run at the 2019
Hyperloop competition [4]. Most importantly, very high voltages were required to drive the
motor at high speeds [8]. This is due to the high frequencies needed at higher speeds. LIM19
has a pole-pitch of τp = 91 mm. With equation 1.1 a frequency of fp > 381 Hz is required to
reach a speed of 250 km h−1. To drive a sinousoidal current of Ipeak = 400 A with this frequency
through an inductor with 1 mH a peak voltage of vpeak = j · ω · L · ipeak = 1920 V is required.
Since a LIM has an inductive behaviour three possible interventions arise:

1. reduce the inductance.

2. reduce the needed frequency for higher speeds.

3. reduce the current needed.

4. use higher voltages (more batteries).

Further on, by rising the motor frequency the switching frequency rises as well and is always
kept at a rate 10 times higher than the motor frequency. In the IGBT modules used for the
inverter the current switching is the biggest source of loss. This has to be accounted for, which,
in 2019, was done by installing a big heat sink.

1.2.2 Pod Propulsion 2020

In the season 2019/2020, Swissloop aimed to continue the successful idea of a LIM taking into
account the lessons learned in the previous year. The goal thereby is to provide a foundation
for research on new propulsion concepts and therefore building a new LIM and a new inverter.
With this in mind the Swissloop team designed a novel type LIM called Software-Defined Linear
Induction Motor (SDLIM) (or LIM20). The idea of this concept is to develop a motor of the
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right LIMleft LIM

+dcV

−dcV

Figure 1.5: Electrical layout for one pole of the LIM20

same behavior as the former at low frequencies, but with a change in at higher frequencies.
As soon as maximum voltage is reached the pole-pitch of a SDLIM can be changed in such a
way, that lower frequencies can be used to further accelerate the pod. This is called ”Dynamic
Pole-Pitch-Transition” and will further be investigated in the last part of this thesis.
Dynamic Pole-Pitch Transition is only possible if more than three phases are used. Therefore,
a new scalable high-power multi-phase variable frequency inverter was designed [8] and with
it the SDLIM. In contrast to the LIM19, where the windings were around the yoke, this LIM
has its windings around the teeth (Fig. 1.6). This allowed more winding-turns and therefore a
smaller current to be handled by the inverter. To ensure the same current on both sides of
the LIM the corresponding coils from the left and right side were connected in series and then
driven by one full-bridge phase-leg of the inverter (Fig. 1.5).
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(b) 2D schematic of a DSLIM

Figure 1.6: One pole-pair with the corresponding winding topologies of the LIM19 and LIM20.
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2 Theory of Linear Induction Motors

For further understanding it is necessary to give an insight into the theory of a LIM. This
chapter introduces the physical working principles of an induction machine by using Maxwell’s
Equations and the Lorentz Force. As discussed in chapter 1 it will be based on a short primary
LIM as shown in Fig. 1.1. The theory will then be derived in a general fashion such that it
can be applied to a Single- or Double-Sided-LIM. Most of this theory is abbreviated from the
”Theory of Linear Induction Motor (LIM)” by Dr. Jasmin Smajic [9].

2.1 Magnetomotive Force

The MMF is the driving force for the magnetic field in a magnetic circuit. It can be compared
to the voltage in an electric circuit. For a single coil the MMF (θ) is

θcoil = kwNI , (2.1)

where N is the number of turns, I is the current and kw is the winding factor. N · I is also
called ”ampere-turns” (At). The winding factor kw for linear motors is described as

kw = kpkd , (2.2)

where the pitch factor is
kp = sin(πτc2τp

) (2.3)

and the distribution factor is kd ≈ 1 [10]. The pole-pitch τp is the distance between two poles
and the coil-pitch τc is the distance between the windings of the different phases.

In the case of a LIM the driving force of the magnetic field are the coils in the primary side.
By looking separately at the excitation of the three phases in the LIM shown in Fig. 1.1a, each
winding generates a time and place dependent MMF.

θR(x, t) = A sin(ωt) sin( π
τp
x) (2.4)

θS(x, t) = A sin(ωt− 2π
3 ) sin( π

τp
x− 2π

3 ) (2.5)

θT (x, t) = A sin(ωt− 4π
3 ) sin( π

τp
x− 4π

3 ) (2.6)

with
A =

√
2 a1kwNIrms (2.7)

while N is the number of turns per winding and a1 is the Fourier coefficient for the fundamental
frequency of the real MMF. The real MMF generated by one phase is close to a rectangular
shaped function. To make a full analysis of the magnetic field a Fourier transformation should
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Theory of Linear Induction Motors

be applied and the analysis done for each frequency. An analysis with the fundamental frequency
and the winding factor is accurate enough for this purpose and therefore only those will be
taken into account. The MMF of phase R is illustrated in Fig. 2.1.
Equations (2.4) – (2.6) written in exponential form and added up, result in the total MMF
phasor

θtot(x, t) = 3
2Aej(−ωt+ π

τp
x) . (2.8)

By looking at the maximum of the MMF it can be shown that it propagates along the x-axis
over time. The speed at which it travels can be calculated as

exp j(−ωt+ π

τp
x) = 1 ⇒ −ωt+ π

τp
x = 0 (2.9)

and therefore
vs = x

t
= 2τpf . (2.10)

vs is called the synchronous speed of the motor because, if the motor drives with this speed it
would be as fast as the magnetic field. The normalized difference between the motor speed and
the synchronous speed is called the slip s and can be used to describe the different operating
ranges.

s = vs − v
vs

(2.11)

For 0 < s < 1 the LIM is in motor-mode. A slip s < 0 means it has the function of a generator
and for s > 1 a negative speed relative to the speed of the field is implied and the motor is
braking.

2.2 Electromagnetic Inductance

Ampere’s Law tells us that the MMF generated in an area is equal to the closed line integral of
the magnetic field strength on the border of this area. Displacement currents are neglected.∮

∂A
H dl =

∫∫
A

J dA (2.12)

Applying this to the closed curve (C) in Fig 2.2 results in

Hy(x, t)δ −Hy(x+ dx, t)δ = θtot(x, t)
dx

τp
+ Jz(x, t)dr dx . (2.13)

Three assumptions were made to lead to this result: µr,fe � 1, dx� τp and Jz = const. over dr.
The relative permeability of iron is µr ≈ 200 000� 1. The result of which is that Hfe � Hair

and therefore only the magnetic field strength in the air gap needs to be considered. By defining
dx � τp, the MMF can be seen as constant over dx. θtot(x, t) contains the total amount of
current distributed over one pole at a given time and place and so it must be divided by the
pole-pitch to get the linear current density that is desired.
If a DSLIM is considered, the total amount of MMF generated in the primary sides is doubled
and this multiplies θtot(x, t) by a factor of two. This will be further implemented as the number
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Primary 1
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R −Rdt dw

δ dr
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0 τp 2τp
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Figure 2.1: The real MMF and the first harmonic of phase R over one pole-pair at the time
t = 0.25T .
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lp = 2 · τp · p

δ dr

θ(x, t)

θ(x, t)

(C)

Figure 2.2: Schematic of a DSLIM with the closed curve (C) and distributed MMF.
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of primary sides np. Using By = µ0Hy yields

∂

∂x
By(x, t) = θtot(x, t)

µ0np
τpδ

+ Jz(x, t)
µ0dr
δ

. (2.14)

Jz(x, t) are the currents that are inside the secondary conductor. These occurring currents are
the eddy currents induced by the time-changing magnetic fields as no external electric field is
in the secondary. Faraday described the connection between time-changing magnetic fields and
electric fields with the law of inductance.∮

∂A
E dl = − ∂

∂t

∫∫
A

B dA (2.15)

Applying this to a closed curve (C1) perpendicular to the previous curve (C) inside the secondary
conductor yields

Ez(x, t)ws − Ez(x+ dx, t)ws = − ∂

∂t
B(x, t)eywsdx (2.16)

∂

∂x
Ez(x, t) = ∂

∂t
[B(x, t)ey] (2.17)

∂

∂x
Ez(x, t) =

[
∂

∂t
By(x, t) + v

∂

∂x
By(x, t)

]
, (2.18)

where ws is the depth of the model and therefore the dimension in z-direction of the LIM.
The second term in the time derivative of the magnetic field in (2.18) is because the loop
is considered as fixed on the secondary conductor. So if the motor is moving the change of
position will introduce a change in magnetic field. With the current density defined as

J(x, t) = σsE(x, t) , (2.19)

equation (2.18) and the derivative of (2.14) result in

∂2

∂x2By(x, t)−
σsµ0dr
δ

[
∂

∂t
By(x, t) + v

∂

∂x
By(x, t)

]
= µ0np

τpδ

∂

∂x
θtot(x, t) . (2.20)

The magnetic field By(x, t) is generated by θtot(x, t) and therefore has the form

By(x, t) = Bse
j(−ωt+ π

τp
x+Φ) (2.21)

(2.8) and (2.21) in (2.20) yields

−
[
π

τp

]2

By(x, t)−
σsµ0dr
δ

[
−jωBy(x, t) + jv π

τp
By(x, t)

]
= jµ0npπ

δτ2
p

θtot(x, t) (2.22)−( π
τp

)2

+ jσsµ0drπ

δτp
(vs − v)

Bse jΦ = jµ0π

δτ2
p

np
3
2A (2.23)

−( π
τp

)2

+ jσsµ0drπ

δτp
(vs − v)

Bs = µ0π

δτ2
p

np
3
2A(sin Φ + j cos Φ) . (2.24)
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Dividing into imaginary and real parts leaves

−
(
π

τp

)2

Bs = µ0π

δτ2
p

np
3
2A sin Φ (2.25)

σsµ0drπ

δτp
(vs − v)Bs = µ0π

δτ2
p

np
3
2A cos Φ . (2.26)

This can further be simplified to

− 2πδ
3npµ0

Bs = A sin Φ (2.27)

2σsdrτp
3np

(vs − v)Bs = A cos Φ (2.28)

and Bs and Φ can then be calculated as

Φ = arctan
[

πδ

µ0σsdrτp(v − vs)

]
(2.29)

Bs =
np

3
2A√[

πδ
µ0

]2
+ (σsdrτp)2(vs − v)2

. (2.30)

The eddy currents can then be derived from (2.18) and (2.19) as

Jz(x, t) = σs

[∫
∂

∂t
By(x, t) dx+ vBy(x, t)

]
(2.31)

Jz(x, t) = σs(v − vs)By(x, t) (2.32)

2.3 Lorentz Force

In the previous section the magnetic field in the air gap of a LIM and the eddy currents induced
in the secondary conductor were derived. From these two the thrust generated by a linear
motor can be derived using the Lorentz Force. It states that on any moving charge in an
electromagnetic field the following force is applied to it.

F = qE + J×B . (2.33)

No external electric field is applied to the secondary conductor and therefore only the second
part of the equation is considered. For the thrust analysis only the x-component is of interest
which leads to

fx = JyBz − JzBy , (2.34)

where again the first term can be neglected as the current generating the B-Field is assumed to
be only in z-direction and therefore Bz = 0. In this assumption the winding heads of the LIM
are neglected. This is usually acceptable as they are kept as small as possible and therefore
have a much lower impact on the behaviour of a motor. To show this negligible impact a 3D
analysis using ANSYS Mawell [11] was conducted. Results are described in chapter 3.
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Applying the magnetic field By(x, t) and the current density Jz(x, t) derived to Equation (2.34),
the force density for a LIM can be derived. By integrating over the volume of the secondary
one gets the total thrust of the motor.

Fthrust =
∫∫∫

V
Re[Jz(x, t)B∗y(x, t)]dV (2.35)

For a short secondary motor the volume is straight forward. For a short primary the length of
the primary side is to be considered for the volume integral. With Jz(x, t) and By(x, t) from
(2.32) and (2.21) constant over y and z it results in

Fthrust = wsdrlpσs(v − vs)B2
s , (2.36)

where lp is the length of the primary , dr is the thickness of the the secondary conductor sheet
and ws is the dimension of the LIM in z-direction. The behaviour of thrust to speed when
changing different parameters is shown in Fig. 2.3. This behaviour corresponds closely to the
one described in the theory of asynchronous rotary machines [12].
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Figure 2.3: Behaviour of the thrust when changing different parameters.

2.4 Reducing Harmonics

Up until now only the first harmonic has been discussed. Higher harmonics have a smaller pole-
pitch due to the higher spatial frequency. With a smaller pole-pitch the respective synchronous
frequency decreases. This results in a negative slip for higher harmonics most of the time
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which means they are in generator mode and therefore reduce the thrust of the motor. By
introducing a Fractional Slot Concentrated Winding (FSCW) the 5th and 7th harmonic of the
Slot Concentrated Winding (SCW) for LIM20 can nearly be crossed out (Fig. 2.4). However,
an optimization showed that the thrust to weight ratio was higher for the SCW and therefore
this design was chosen for the LIM20. Due to the quadratic behavior of the thrust to the
amplitude the effects of higher harmonics were smaller than expected. Along with this, the
production of FSCW proved to be complicated, which resulted in a heavier design.
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Figure 2.4: The MMF and its harmonic analysis of the SCW of the LIM20 and a FSCW.

2.5 End-Effects

By looking at Equation (2.20) the general solution of this equation has the form

By(x, t) = Bse
j(−ωt+ π

τp
x+Φ) +B1e

−x
α1 ej(ωt− π

τ1
x) +B2e

x
α2 ej(ωt+ π

τ1
x) , (2.37)

where α1 and α2 are both positive factors dependent on the speed of the LIM. The second term
(B1-wave) is a forward traveling wave and the third term (B2-wave) is a backward traveling
wave. Both waves propagate with the same speed and decay while traveling, their distance of
penetration is given by α1 and α2 [5]. These terms are called the end-effects. The second term
is called the entry-end-effect and the third term the exit-end-effect, in respect to where they
occur. The magnitude of the end-effects are constants given by the two boundary conditions[5],∫ ls

0
B(x, t) dx = 0 (2.38)
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and
B(0, t) = −ρs

v
Jprimary(0, t) . (2.39)

It can be shown that the exit-end-effects decay very quickly and have a minor effect on the
behavior of the LIM. The entry-end-effects however gain importance at higher speeds. At very
high speeds B1 almost neutralizes the normal wave Bs near the entry end which results in a
large reduction of thrust.
The two end-effects can be imagined as field and energy left behind at the end of the LIM and
the need of energy to constantly induce eddy currents to new secondary conductive material
that comes into the LIM.

For high-speed applications like the Hyperloop, these end-effects play an important part in
designing the LIM. A rule of thumb thereby is ”the more pole-pairs the better”. This can also
be seen in the simulations shown later.
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3 Thrust

Initially, Swissloop designed a 6 pole-pair LIM to take to the SpaceX Hyperloop Pod Competition
2020. In January 2020 the competition was canceled and Swissloop decided to produce only a
smaller variant of this LIM with one pole-pair to verify and test the idea of the SDLIM. This
smaller LIM is called the ”BabyLIM”.

Figure 3.1: The two primary sides of the BabyLIM.

Variables dr δ τp dt dw ws p N Ipeak
Value 10.4 mm 20.4 mm 96.3 mm 20 mm 12.1 mm 53.2 mm 1 56 150 A

Table 3.1: Dimensions of the BabyLIM.

3.1 1D Analysis in Python

The theory of chapter 2 was implemented using Python. The full script can be seen in Appendix
A.1. As no geometrical aspects as the shape of the teeth and winding windows have been taken
into account it must be taken with caution. These geometries highly affect the shape of the
curve. However, this analysis can be conducted to get a first impression on how the motor
thrust will behave and in what range the thrust can be expected.

The result of this analysis for a one pole-pair LIM with a primary frequency of 40 Hz, 80 Hz
and 120 Hz is shown in Fig. 3.2. It can be seen that the curve stays the same but gets shifted
to the right with increasing frequency. The BabyLIM shows the expected behaviour with a
maximum thrust of about 850 N. Looking at the LIM20 with 6 pole-pairs a maximum thrust of
5100 N is observed (Fig. 3.3). Except for the maximum thrust, the shape of the curve does not
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change with increasing pole-pairs. Further simulations will show under what circumstances
these results can be a legitimate approximation.
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Figure 3.2: 1D Thrust-Speed analysis of the BabyLIM.
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Figure 3.3: 1D Thrust-Speed analysis of the 6 pole-pair LIM20.

3.2 2D Simulation with ANSYS Maxwell

To get more accurate results and verify the 1D analysis a 2D simulation using ANSYS Maxwell
is conducted. In addition to the aspects of the 1D analysis, Finite Element Method (FEM)
simulations done with such a program take multiple additional effects into account. The
geometry includes the shapes of teeth and winding windows as well as the overall height.
The iron is taken as a metal with a defined B-H-curve that is given by the material of the
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manufacturer. With it saturation effects of this material core can be seen. Additionally to the
saturation, End-effects are taken into account in such an analysis. End-effects will prove to
have the biggest impact on the behavior of the BabyLIM.

3.2.1 BabyLIM

The model for the simulation was drawn in ANSYS Maxwell with the dimensions given in
Table 3.1. To simplify the design and speed up the computation a symmetry axis was introduced
in the middle of the secondary aluminum conductor. This symmetry is defined as an even
symmetry which means that the flux is normal to it. The model was designed to be as close as
possible to the real DSLIM and therefore the curved edge at the top and the cuts for the security
plates in the teeth were also modeled. The impact of those elements on the result have been
proven to be negligible but as they did not affect the computation time they were kept in the
model. The coils are modeled as two plane copper sheets and defined as stranded. This means
that no eddy currents are calculated in the copper sheet and the current is evenly distributed
over the area. With a wire area of 3 mm2 in the original coils and a maximum frequency of
1 kHz, the penetration depth of the skin effect is 2 mm. Therefore this simplification can be
done. For the mesh size a maximum of 6 mm was chosen. A screenshot of the model in ANSYS
Maxwell is given in Fig. 3.4.

Figure 3.4: 2D model of the BabyLIM in ANSYS Maxwell.
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Figure 3.5: Comparison of the BabyLIM 2D simulation with the 1D analysis (dotted).
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The transient electromagnetic analysis was done using a parametric setup to sweep the speed
from 0 m s−1 to 25 m s−1 in steps of 1 m s−1. The simulation time was chosen to be 80 ms. To
account for the settling of the motor the results were then averaged between 40-80 ms. Fig. 3.5
shows the thrust-speed characteristic of the BabyLIM simulated with the model in Fig. 3.4.

The results obtained in these simulations show a big difference to the results of the 1D analysis
when getting to a low slip. This is mostly due to the end-effects, as those are the only effects
that differ with speed. This also shows, that the effect of higher harmonics on the thrust are
comparably small.
It takes about one pole-pair to fully induce the field in the secondary [5]. This means that with
more pole-pairs the end-effects would get smaller compared to the overall force. Therefore, it
makes sense to check if the end-effects are equally serious in the full 6 pole-pair LIM20.

3.2.2 LIM20

The DSLIM Swissloop designed for its season 2019/2020 has 6 pole-pairs. The other parameters
are the same as for the BabyLIM and are given in Table 3.1. The 2D model has been drawn
with the same simplifications as stated above for the BabyLIM and is shown in Fig. 3.6.

Figure 3.6: 2D model in ANSYS Maxwell for the LIM20.
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Figure 3.7: Thrust of the LIM20 2D simulation compared to the 1D analysis (dotted).

The result of this analysis with a frequency fp of 40 Hz, 80 Hz and 120 Hz are calculated in
the same manner as for the BabyLIM and are presented in Fig. 3.7. Comparing the results to
those of the 1D analysis shows a close match between them. The impact of the end-effects is
much smaller than on the BabyLIM. This is the expected behavior and shows that longer LIM
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with multiple pole-pairs are better suited for high-speed applications. Nevertheless, end-effects
still have a great impact and the maximum thrust falls below 2 kN for speeds above 140 m s−1

(540 km h−1) as shown in Fig. 3.8.
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Figure 3.8: Thrust of the LIM20 2D simulation vs. 1D analysis (dotted) at 800 Hz.

3.3 3D Simulation with ANSYS Maxwell

In a design process a 3D model should finally be applied to verify the results of the 2D model
and including the winding heads. Those can not be modeled in the 2D design and in a typical
rotary motor the winding heads can have a noticeable effect on the behavior of the machine.
In the case of the LIM20 the overheads are comparably small and therefore the effect on the
thrust is expected to be negligible. The model used for this analysis is shown in Fig. 3.9.

(a) cut

(b) side

tangential flux

norm
alflux

(c) front

Figure 3.9: 3D model in ANSYS Maxwell for the BabyLIM with the two symmetry planes
marked red in the front view.
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3D models are much more complicated than 2D models and the time it takes to simulate can
quickly become more than double the time for a similar 2D model. For that reason only the
BabyLIM is modeled and then compared to the results of the 2D simulation. From there, a
conclusion for the LIM20 can be made. Besides the symmetry introduced in the 2D model, a
second symmetry plane is introduced. This symmetry plane cuts the LIM in half and is defined
as a tangential flux symmetry. So for the 3D model only one quarter of the LIM needs to be
analyzed, which reduces computation time effectively. However, the simulations still take a lot
longer than 2D models.
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Figure 3.10: Thrust-speed analysis at 120 Hz, 3D simulation compared to 2D (dotted).

When comparing the results of the 3D analysis to the 2D analysis of the BabyLIM they are
about 30 % higher than expected (Fig. 3.10). As the curve is just lifted it seems as if the LIM is
actually longer or wider than simulated in the 2D model. This appears due to the wider actual
penetration width of the aluminum sheet by leakage fields and the nonhomogeneous air gap
field. When looking at the magnetic field in the core and the eddy-current in the aluminum this
can be seen as the eddy-currents go beyond the dimensions of the primary (Fig. 3.13). When
lowering the width of the secondary to match the width of the primary the results in Fig. 3.11
are obtained. These results look as if the conductivity of the secondary had been lowered. This
is not the case. But by reducing the width the current has less place at the border to move in
the circular motion. This results in higher current densities at the border or respectively higher
resistance due to the smaller area. This has to be accounted for if the secondary has the exact
same width as the primary.

In Swissloops case the secondary width is greater than the primary. To match the 2D design
the spread of the magnetic field has to be taken into consideration. This can be done using the
Schwarz-Christoffel-Transformation. With it the actual air-gap reluctance is derived as

R′b = 1
µ0
[
w
2l + 2

π

(
1 + ln πh

4l

)] , (3.1)

with the structure described in Fig. 3.14 [13]. When comparing this to the air gap reluctance
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Figure 3.11: 3D compared to 2D (dotted) when matching the width of secondary and primary.

of a homogeneous field
R′m,air ≈

2l
µ0w

, (3.2)

the effect of the material is widened by

∆w =
w
2l + 2

π

(
1 + ln πh

4l

)
2l . (3.3)

Applying this to the 2D model and comparing the results to the 3D simulation, results in a
much smaller difference. The maximum thrusts match very closely. However, at lower speeds
this is still not a suitable explanation. The field produced by the winding heads has a much
greater influence there then around maximum thrust. When going in a low slip region, this is
again the case.
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Figure 3.12: Thrust-speed analysis at 120 Hz, 3D simulation compared to 2D with Schwarz-
Christoffel-Transformation (dotted).
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Figure 3.13: Magnitude of the magnetic field in the core and the eddy-currents in the aluminum.

2lh h

w
µ→∞µ→∞

Figure 3.14: Structure for the Schwarz-Christoffel-Transformation.

3.4 Conclusion

For high pole-pair numbers the 1D analysis is a powerful tool to investigate in what region
the thrust will be in a design process. However, end-effects should be included in this analysis
to improve reliability. They play an important part in designing high speed LIM. For few
pole-pairs their influence at low speeds is already significant. Above 7 m s−1 the thrust of
the BabyLIM is less than 50 % of the assumed thrust of the 1D analysis. When using more
pole-pairs the influence at lower speeds is comparably small but gets again significant as soon as
higher speeds are reached. Investigations to lower the end-effects must be made if high thrust
is needed at high speeds.
In 2D simulations the depth of the model has to be carefully set. For accurate results the
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three-dimensional picture needs to be known. From there more accurate solutions can be
simulated with the Schwarz-Christoffel-Transformation. For the BabyLIM with the Schwarz-
Christoffel-Transformation this results in the expected thrust curves as shown in Fig. 3.15.
However, they are expected to match the real data only on the maximum thrust points of every
curve, because of the influence of the winding heads.
Due to the long simulation times for 3D models it is not recommended to use them in an early
design phase. See section 6.1 for more details. However, for final results a 3D simulation at
critical points should be considered.
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Figure 3.15: 2D simulation of the BabyLIM using Schwarz-Christoffel.
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4 Pole-Pitch Transition

When designing vehicles for high-speed applications like Hyperloop a second challenge occurs
besides the loss of thrust though by end-effects. For higher speeds higher frequencies are needed
for the motor to stay in motor-mode (0 < s < 1) and not to slow down. With increasing
frequency the supply voltage needed to drive the current rises. In Hyperloop pods with the
active part on board, the energy to drive the system needs to be carried with it because of the
high speeds. For electricity this is conventionally done with batteries. For ”Claude Nicollier”
Swissloop had a battery of 900 V on board [14]. This voltage maximum was quickly exploited.
To further increase the frequency the current had to be reduced. According to Equation (2.36)
in chapter 2 the thrust is proportional to the square of the current but is linear to the number
of poles. Therefore, the idea of changing the number of poles when hitting the maximum
voltage reduces the thrust only linearly compared to the quadratic reduction when lowering the
current. This comes with various challenges. First of all a LIM is required where every coil
can be controlled independently and an inverter that is capable of controlling multiple phases.
Additionally, the now parallel structure of the windings, rather than a series connection as
in the previous year, ask for a battery delivering high currents. With the LIM20, the newly
designed scalable high-power multi-phase variable frequency inverter [8] and a custom-designed
battery [14] made this possible.
This chapter will now investigate the current transition that is needed to do such a change
in pole-pairs (or pole-pitch). Later, a 2D simulation is conducted to show how the thrust is
effected by a pole-pitch transition.

4.1 Current Transition

To change the pole-pitch the speed of the second field has to match the speed of the first field
in order to ensure a smooth transition. This yields

2τ1f1 =vs = 2τ2f2 (4.1)
f1
f2

=τ2
τ1

= p1
p2

(4.2)

when using all windings before and after the transition. Therefore, the pole-pitch needs to be
doubled if the frequency is to be cut in half. With this in mind let’s now look at the LIM20
from Swissloop. The LIM has 36 individually controllable phases. To now get a 6 pole-pair
LIM each current must have an angle shift ϕ of

ϕ = 6 · 2π
36 = π

3 . (4.3)

Because sin(π3 ) = −sin(4π
3 ) this can be divided in three individual phases that are needed to

drive the motor. This means with 6 pole-pairs this motor behaves as if it were driven by a
three-phase current source. If now an arbitrary number of pole-pairs p are to be injected, it
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results in
ϕ = 2π p

36 = π p

18 . (4.4)

Up to 18 pole-pairs are possible with 36 phases. Such high pole-pair numbers will however
lead to a high-harmonic distorted MMF distribution, which greatly affects the efficiency of the
machine. The LIM20 was designed and optimized for a 6 pole-pair topology. Hence this is
assumed to be the initial state. The angle shifts ϕ for pole-pairs p ≤ 6 can then be derived
according to (4.4) and are listed in Table 4.1 and the corresponding current vectors for pole-pairs
6,5,4 and 3 are given in Fig. 4.1.

p 6 5 4 3 2 1
ϕ 60◦ 50◦ 40◦ 30◦ 20◦ 10◦

Table 4.1: Angle shifts between phases for different pole-pairs.

These calculations above were done for a steady-state. The idea to get now from one steady-state
into the other is to leave the old magnetic field behind and introduce the new field from the
front. When setting the frequencies according to Equation (4.2), the fields move with the same
speed and a transition can be done at the same current value for every phase.
Let’s look at a pole-pitch transition from p1 to p2 and the transition start time t1. This results
in a current in coil 1 of

i1(t1) = Ipeak sin [2πf1t1] . (4.5)

To fulfill the condition that the current at time t1 equals i1, the current i′1 for p2 pole-pairs
must be

i′1(t) = Ipeak sin [2πf2(t− (f2 − f1)t1)] . (4.6)

The transition of the phase k will then be at time

tk = t1 + (k − 1) p1
f136 = t1 + (k − 1)k p2

f236 , (4.7)

with the current for phase k defined as

ik(t) = Ipeak sin
[
2πf1t− (k − 1)πp1

18

]
(4.8)

i′k(t) = Ipeak sin
[
2πf2(t− (f2 − f1)t1)− (k − 1)πp2

18

]
. (4.9)

The total transition will take T = p1/f1 = p2/f2 seconds. For the inverter and the control loop
voltage jumps are not desired because of parasitic capacitances. Hence, for a smooth transition
not only ik(tk) = i′k(tk) must hold, but also

d ik
dt

(tk) = d i′k
dt

(tk) . (4.10)

This is the case for t1 = T1
4 + nT1 with n ∈ N and T1 = 1

f1
, which results in ik(tk) = ±Ipeak.

The MMF of a transition from 6 to 3 pole-pair with ik(tk) = Ipeak at times t1, t12, t24 and t36
is shown in Fig. 4.2.
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Figure 4.1: Current phases for different pole-pairs for the LIM20.

ETH Zürich 39 Matthias Strässle
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Figure 4.2: MMF of a pole-pitch transition from 6 to 3 pole-pair while the x-axis is the length
of the LIM indicated by the number of the phase at that point.
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4.2 2D Simulations with ANSYS Maxwell

To investigate the impact of such a pole-pitch transition on the thrust force a 2D simulation
is conducted using ANSYS Maxwell. The behavior of the motor during the transition, when
an odd number of poles are induced, is of main interest. For the simulation the 2D model of
the LIM20 used previously was taken and abbreviated for this purpose. Some small changes
in the definition of the copper sheets had to be made. The most important change however
was the current source. Until now the windings were directly defined with a sinusoidal current
in the modeler of ANSYS Maxwell. For the pole-pitch transition the frequency needed to be
switchable and therefore the excitation had to be done differently. ANSYS Electronics Desktop
provides a solution for more complicated current forms with Maxwell Circuits. There a circuit
can easily be drawn with the windings in the model defined as inductors. The model can then
be linked to this circuit where the names of the windings have to match the names of the
inductors. This was done for the pole-pitch transition. By using multiple current sources and
controllable switches the desired currents could be generated. The circuit design for each coil is
shown in Fig. 4.3. Parallel switches to the current sources were needed to give the current a
path to run when the connecting switches are off. To ensure equivalent switching the parallel
switches are controlled by the inverse signal of the corresponding connecting switch.

Figure 4.3: Circuit for one coil.

Simulations were then done for doubling the pole-pitch (from 6 to 3 pole-pairs) and for a
transition from 6 to 5 pole-pairs which corresponds to lengthening the pole-pitch by a factor of
1.2. The simulation was started with the results from the 2D analysis of LIM20. This allowed
the transition to start from a steady-state while keeping the simulation time reasonable.

4.2.1 Ideal Transition

Following the steps explained in section 4.1 the current transition was set to take place at a
maximum current in every coil. This resulted in a smooth transition without an overshoot
and voltage spikes, as shown in Fig. 4.4. Hereby the induced voltage could be reduced by 40 %
while still maintaining over 80 % of thrust for a transition from 6 to 5 pole-pairs. If a similar
reduction in voltage is to be achieved by lowering the current, one would need to go below
100 A peak current, simulations showed. This would result in a thrust of less than 2 kN, far
less than with a pole-pitch-transition.
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Figure 4.4: Ideal pole-pitch-transition at 20 m s−1 and 120 Hz starting frequency. The curves
are indicated with the respective pole-pairs.
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4.2.2 Non-Ideal Transition

In a non-ideal switching at least one of the two conditions is not fulfilled. First a transition
is considered with unequal derivatives but the same value at the switching point and then
transition points at which the current value and the derivative are non-identical.

For the first case the results are shown in Fig. 4.5. As a transition time, t1 = 8T was chosen,
resulting in a current ik(tk) = 0. The thrust curves show a similar behavior as for the ideal
transition with no overshoot. Therefore, in therms of thrust it can be seen as a smooth transition
with no transient swings. However when looking at the induced voltage this changes. The two
curves show a big difference in voltage behavior. For the transition from 6 to 5 pole-pairs it is
almost the same as in the ideal case. There the difference in the derivative is small and has
therefore only a negligible effect. If however a noticeable difference in the derivative occurs as
it is the case for the transition from 6 to 3 pole-pairs, voltage jumps can be observed.

Secondly, if the current values are non-identical at the time of switching, the current through
an inductor has to change quickly. This results in very high voltages as observable in the high
voltage spikes in both transitions in Fig. 4.6. Contrary to expectations, this did not lead to a
considerable transient swing in the thrust curve. A small overshoot can be seen in the transition
and the disturbances got bigger but stayed in a manageable margin.

4.3 Convergence

The simulations for a pole-pitch transition proved to be quite challenging. For certain speeds
the solver converged, at other speeds strange behavior was observed with multiple spikes in
the curve and massive swings. After eliminating the already encountered design errors like a
to short space to move for the aluminum secondary etc., it seemed as if the solver ran into
convergence issues. This can happen as very high current densities are observed in the secondary.
The initial conditions for every setup were 0 in all points. This is not optimal and in these
cases it seemed as if no stable solution could be found. However, by starting already close to
the solution this problem can be solved. For these simulations this could be done by starting
from a converged solution that is close, for example to start from the solution of 20 m s−1 and
calculating the solution for 19 m s−1.

4.4 Conclusion

At the SpaceX Hyperloop Pod Competition 2019 Swissloop hit the maximum voltage quite early
in the run. They had to reduce the current to further increase the frequency and lost a lot of
thrust on the way. These simulations showed that a pole-pitch-transition is a great alternative
to reduce the induced voltage, while losing less thrust than with a comparable decrease in
current. On the other hand, the steps are defined and it can not be done continuously. With
fewer pole-pairs, the end-effect gain on influence and the reduction of thrust can no longer be
approximated as linear when going below 4 pole-pairs.
When conducting a pole-pair-transition it should be controlled carefully. Larger differences in
the reference curve of the controller or its derivative at the time instant of switching to the new
frequency for a coil can cause severe voltage spikes. This could lead to high stresses for the
inverter or even failure.

ETH Zürich 43 Matthias Strässle
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LIM20 non-ideal Pole-Pitch-Transition
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Figure 4.5: Pole-pitch-transition with different derivatives at 20 m s−1 and 120 Hz starting
frequency. The curves are indicated with the respective pole-pairs.
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LIM20 non-ideal Pole-Pitch-Transition
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Figure 4.6: Pole-pitch-transition with a different value and derivatives at switching instant for
20 m s−1 and 120 Hz starting frequency. The curves are indicated with the respective
pole-pairs.
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5 Levitation

Swissloop’s investigation of the suspension for high-speed vehicles showed multiple challenges.
Up until now the suspension was done with conventional wheels and dampers. When moving
fast massive forces act upon these wheels and small bumps in the track can cause deformation
of them [14]. Therefore, Swissloop decided to start investigating the possibility of magnetic
suspension by using the magnetic field of the LIM. Generally this can be done in two different
ways. Iron could be introduced into the secondary such that the attraction force can then be
used to lift the pod. Alternatively the repulsive forces of the eddy-currents in the aluminum
could be used to hover above the track. Both designs are only achievable with a SSLIM. The
iron in the secondary would not allow for the field to reach the primary on the other side. With
a DSLIM the repulsive forces from either side are canceling each other out and levitation is not
feasible.
Attraction forces to iron are much greater than the repulsive forces of the eddy-currents. For a
stable system however, attraction forces should get smaller when the pod comes closer to the
track and repulsive forces would need to get bigger. As both forces get bigger when the air-gap
is reduced, repulsive levitation has a stabilizing effect. In this chapter the repulsive forces for a
moving LIM are investigated. This is due to the track. It is a solid aluminum I-beam and only
repulsive forces can, therefore, be used for suspension.

The Lorentz Force applied for levitation can be calculated from Equation (2.33). But now the
component in y-direction is of interest.

fy = JzBx − JxBz (5.1)

The second term can again be neglected as we assumed the MMF to have only a z-direction
and therefore Bz = 0. This means that the repulsion is generated by the magnetic field in the
secondary in moving direction.

5.1 2D Simulations with ANSYS Maxwell

As stated above, a SSLIM will be simulated here to investigate the repulsive forces from the
aluminum secondary. The DSLIM model was taken from the 2D simulations of the LIM20 and
used without the symmetry plane. The thickness of the secondary was doubled and an iron
backplate of the length of the primary was introduced, similar to the design in Fig. 1.1a. As
the iron backplate adds weight and its distance to the primary presents a hard limit for hover
width, the simulations will be done with and without it.

With an iron backplate (WI) the thrust is expected to be a quarter of the thrust of the DSLIM
simulated in chapter 3. This is due to the quadratic behavior of the thrust to the MMF. When
looking at the results, this is confirmed. The red curves in Fig. 5.1 shows a maximum of
1.1 kN. The design without an iron backplate (WoI) however has a much lower maximum thrust.
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Without iron on the other side the field is not guided through the aluminum, which results in
a lower penetration depth and therefore a lower thrust. When looking at the repelling force
for levitating, a maximum of 1.3 kN is obtained for 120 Hz. The iron backplate however has
not as much an influence as for the thrust. For the stable region of the motor thrust (negative
derivative) the repelling force falls below 1 kN.
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Figure 5.1: Thrust and repelling force with and without an iron backplate over speed.

With higher frequencies however a second effect takes place. Due to the frequency the current
is pushed to the border of the secondary, known as skin effect. This results in high currents at
the border and the field is guided through the aluminum without reaching the iron backplate.
Resulting in almost no difference between the designs. In Fig. 5.2 the results of a simulation
with 800 Hz are shown. On the left side of the graph a weird behavior is observed. This comes
due to convergence issues of the solver. However, as this region is not of interest, and the solver
converged at higher speed, they were not rectified. These speeds however could if necessary be
simulated by starting with the first solution that converged and going step by step backward,
always starting from the previous solution. The repelling force for 800 Hz is 1.5 kN and is again
reduced when getting closer to the synchronous speed.
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Figure 5.2: Thrust and repelling force with and without an iron backplate over speed at 800 Hz.
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To investigate how good the stabilizing effects of such a levitating LIM are, a simulation with a
variable air gap was set up. The repelling forces for air gaps of 1 mm to 7 mm are shown in
Fig. 5.3. The design without an iron backplate was used for the simulation. The stabilizing
effect can be seen as the force decreases with an increasing air gap.
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Figure 5.3: Repelling forces when varying the air gap.

5.2 Conclusion

The pod Swissloop designed is estimated to have a weight of 200 kg and a repelling force of at
least 2 kN is needed to levitate successfully. Therefore, neither design is able to lift the pod.
It’s weight would have to get below 120 kg to achieve levitation. Alternatively, a longer LIM
could be designed to have higher forces. However, this prolongs the pod and manufacturing
might get more complicated.
If a lighter pod can be built, the repelling forces of the 6 pole-pair LIM might be sufficient to
levitate. Varying the air gap showed promising results on the stabilizing effect of this type of
levitation. However, the wheels can not be neglected totally as the repelling force decreases
at low frequencies. So at the beginning of a run the pod must have wheels to support it. At
higher speeds a lighter pod could levitate.
In the simulated designs the iron backplate improved both the thrust and repelling force. With
increasing speed however the effect vanishes due to the skin effect in the secondary. Therefore,
for high speeds the iron backplate is just additional weight that could be lost if the lower thrust
at low speeds is acceptable.
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6 Conclusion

In a first step the thrust theory of a LIM was investigated and implemented into a 1D analysis
of a DSLIM. The results were then compared with 2D and 3D simulations using ANSYS
Maxwell. The results showed the 1D analysis to be a powerful tool for multiple pole-pairs.
However, to get accurate results end-effects must be included at higher speeds. For LIM
with a low number of poles the end-effects are already significant at low speeds and the 1D
analysis shows a big deviation from the simulations. When simulating in 2D the widening of the
penetration width has to be taken into account to get accurate results and can be done using the
Schwarz-Christoffel-Transformation. For the BabyLIM the simulations with Schwarz-Christoffel
resulted in a maximum thrust of 400 N at 120 Hz. At lower frequencies a thrust of up to 800 N
is expected. Testing of the LIM will show if these are accurate predictions.

For the LIM20 simulations of a pole-pitch-transition were done. With the proposed current
switching a nice transition was achieved. Pole-pitch-transition is a great alternative to lowering
the current if maximum voltage is hit. Higher thrusts can be achieved with it than by decreasing
the current. If however the derivatives or the value of the current are different at the time of
switching the frequency, voltage spikes occur and can cause damage to the system. Therefore,
the control loops have to be carefully designed to switch at the defined instants.

In the last part of this thesis the repelling forces of the LIM20 were investigated and the
possibility of levitating with this motor. 2D simulations showed increasing repelling forces with
frequency. At 120 Hz a maximum of 1.3 kN is observed. This is not enough to lift the 200 kg
pod. To be able to levitate either a bigger LIM has to be designed or the weight of the pod
should not exceed 120 kg. In my opinion the possibility to use attraction forces by adding an
iron sheet to the secondary should be investigated. Unfortunately this is not solely Swissloop’s
decision but it could be proposed to be included in the next test track.

6.1 Simulation Times and Mesh

Time is valuable and simulations can take up a lot of it. Therefore, a small summary of the
duration of the simulations done in this thesis is given here. Simulation times are highly
dependent on the machine they are done on. For this thesis some big simulations were done
on the HPC cluster EULER. However, waiting times can be long on the cluster and therefore
most of the simulations were done on a PC with the following system components.

Processor: AMD Ryzen 7 3700X 8-Core/16-Thread
Mainboard: Gigabyte X570
Memory: 32 GB DDR4-3200MHz
Grafics: Radeon RX580
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To account for system processes and to still have a responsive computer to work on while
simulating only 12 threads were dedicated to ANSYS Maxwell. This allowed for 12 independent
solution setups to run simultaneously. This means that for up to 12 simultaneously started
setups, the time was not prolonged.
Most of the simulations were set up with a simulation step of 0.3 ms the simulated time however
was adjusted accordingly to the need in every setup. Therefore, it is only interesting to compare
the mean solution time for one step. This is given in Table 6.1. For completion the total time
for one setup is listed as well.

Type time per setup time per simstep
BabyLIM 2D 00:25:42 00:00:10

3D 03:45:20 00:03:05
LIM20 2D 01:02:15 00:00:36

3D DNF 00:06:40

PPT 2D 02:00:00 00:01:20

Levitation 2D 02:10:00 00:01:50

Table 6.1: Mean simulation times for one solution setup.

Most simulations done in chapter 3 had 24 and more solution setups. Therefore, the simulations
took at least two to three times the time per setup. A second thing that slowed the solution
setup down was memory limits. The system had 32 GB Memory which was enough for all the
2D simulations. In 3D simulations this was exhausted quickly and the simulations slowed down
or even aborted. Therefore, for 3D setups only two cores were permitted to allow for more
memory per core and solution setup. This prolonged the computation for the 13 setups from
two to seven times the time per setup. For the 3D simulation of the LIM20 the system aborted
even with only one setup running. The error that was shown recorded that the solver has run
out of memory and has therefore been killed. Unfortunately I could not look further into this
topic as my time was limited.

The long simulation times especially in 3D led me to look into measures on how to speed up
the simulations. Thereby I found out that mesh size and geometry have a big impact on the
complexity of a simulation and therefore on the simulation time. As stated above, 6 mm was
chosen as a maximum length for the solids. The vacuum was left to be meshed by the adaptive
meshing of ANSYS, which is quite accurate. From simulations of previous years it was clear
that an increase in the maximum mesh size would get less accurate results. At the beginning
of this thesis I was not aware of the fact that, the current in a 2D design is only allowed to
flow perpendicular to the plane. Therefore, the small gaps between the iron and the coils are
not needed as insulation. This results in a simpler structure and a better mesh (Fig. 6.1). A
similar simplification can be done in 3D with the boundary ”insulation”. It prevents a current
flow perpendicular to the face it is applied to. As in 3D the current is allowed to flow in every
direction, an ”insulation” boundary can be applied to the faces where the current is not allowed
to penetrate. This simplified the geometry and mesh similar to the 2D design by getting rid of
the gaps between a coil and the core or other coils.
Further ideas to improve the geometry and mesh came up. It could be investigated on how
a ”skin depth layered based” mesh in the secondary I-beam would improve meshing and if it
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affects the simulation results. Also, a different meshing in the teeth compared to the rest of the
core might improve simulation time. Unfortunately there was not enough time to implement
this into this thesis.

Other measures to speed up a simulation would be to use not only one core per setup but
more if there are available cores. One test with a distribution of the solver process onto more
than one core however led to impossible solutions and due to time constraints I did not further
investigate this possibility.

(a) With isolation gaps (b) Without isolation gaps

Figure 6.1: Mesh in one slot in the 2D design.

6.2 Unfortunate Circumstances

Unfortunately, the lock-down due to COVID-19 caused delays in the assembly of the Baby-Pod.
Working at ETH or EMPA was not possible until May 11th. Since then up until June 8th
only limited work has been possible on the pod assembly due to social distancing. Under these
conditions it was not possible to test the BabyLIM and compare the results with the simulations
done. However, it opened the opportunity to look deeper into the simulations and extend it
with simulations on the possibility to levitate with the LIM20.

6.3 Future Work

Other than integrating and testing the BabyLIM in the Pod, the effect of a pole-pitch-transition
on levitation could be investigated. Unfortunately, pole-pitch-transition can not be tested
accurately with the BabyLIM due to it having only one pole-pair. However, it would be
interesting to see how the BabyLIM behaves when starting with 2 pole-pairs and then switch
down to one. But first, this would have to be implemented in the control structure of the
BabyPod.
Implementing end-effects into the 1D analysis would highly improve the accuracy of it and
make it a valuable tool in designing the next LIM. Combining this analysis with the inverter
and battery simulations could provide a powerful tool to optimize the entire system.
When further investigating levitation, an idea on how to improve thrust and levitation could
be to introduce an iron layer on top of the I-beam and see if this results in the desired lifting
force while still using a DSLIM to maintain thrust for high acceleration.
In terms of simulations a frequency domain simulation for LIMs might be interesting, as well
as further investigations on how to reduce simulation times.
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ETH Zürich 55 Matthias Strässle
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A Appendix

A.1 Python Program for 1D Analysis

1 """
2 1D Analysis of Linear Induction Motor
3

4 By Matthias Straessle
5 For a Semester Theses at ETHZ in 2020
6

7 """
8 import cmath
9 import os

10 from math import pi
11

12 import matplotlib . pyplot as plt
13 import numpy as np
14 import scipy as sp
15 import scipy. signal as signal
16

17 # |---------------------------------|
18 # | _ _ _ _ _ |
19 # | R | |-T | | S | |-R | | T | |-S |
20 # | | | | | | | | | | | |
21 # |---| |---| |---| |---| |---| |---|
22 # --------------------------------------------------------------> x
23 # |---------------->|
24 # T_p
25

26

27 # Variables [SI]
28 p = 6 # polepairs
29 Toothwidth = 0.02 #20mm
30 Slotwidth = 0.0113 #12mm
31

32 T_p =3 * ( Toothwidth + Slotwidth )
33 print(T_p)
34

35 n = 5000
36 t = np. linspace (0,1,n)
37 x = np. linspace (0, p * 2 * T_p ,n)
38 # print(x[1])
39

40 mu_0 = 4*pi *1e-7
41 d_r = 0.0104
42 gap = d_r + 0.01
43 sigma_al = 2.5 e7
44 I_peak = 150
45 N = 56
46 n_s = 2
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47

48 k_w = 1 * np.sin(pi /3) # winding factor
49 a1 = 1.32
50

51 model_depth = 0.0532 #75mm
52

53 fig = plt. figure ()
54 # magnetic flux in the windings (MMF) with spacial factor
55

56 for f_1 in np. linspace (40 ,120 ,3):
57 i = 0
58 w_1 = 2*pi*f_1
59

60 A = a1 * k_w * N* I_peak # peak flux
61

62 O_tot = 3/2*A*np.exp (1j*(- w_1*t + pi/T_p*x))
63

64 v_s = 2 * T_p * f_1 # synchronous speed
65 print(v_s)
66 v = 0
67

68 F_x = []
69 F_plot = []
70 V_range = np. linspace (0,v_s -0.0001 ,400)
71

72 for v in V_range :
73

74 # Magentic field
75 B1 = (n_s * 3/2 *A)/(np.sqrt ((( pi * gap/mu_0)*(pi * gap/mu_0))+( v_s - v

)*( v_s - v)*( sigma_al * d_r*T_p)*( sigma_al * d_r*T_p)))
76

77 phi = np. arctan ((pi * gap)/( mu_0 * sigma_al *d_r*T_p *(v-v_s)))
78

79 B_y = B1 * np.exp (1j*(- w_1*t + pi/T_p*x + phi))
80 #print(B_y.real)
81

82 # eddie currents
83

84 J_z = sigma_al *(v-v_s)*B_y
85 #print(J_z)
86

87 #Force
88 By = B_y. conjugate ()
89

90 F_x. append ((- model_depth * d_r * sigma_al * (v-v_s)* B1 * B1)*2* T_p* p)
91 # F_x. append (- model_depth * d_r * np.sum (( J_z*By).real) * x[1])
92

93 # normalized all parameters
94 # fprint (max(F_x))
95 # F_x /= max(F_x)
96 # V_range /= 3.6 * v_s
97

98 F_plot . append (F_x)
99

100 plt.plot(V_range , F_plot [i],color =’blue ’, label = "$f_p$ = " + str(int(f_1)
) + " Hz")

101
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102 # for j in range(len( V_range )):
103 # if i%4 == 0:
104 # print ("(" + str(round( V_range [j],3)) + "," + str(round( F_plot [i][

j],3))+ ")", end=’ ’)
105

106 # print (’\n ’)
107

108 i+=1
109

110

111

112 legend = plt. legend ()
113

114 plt.show ()
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