
Institut für Integrierte Systeme
Integrated Systems Laboratory

Department of Information Technology and
Electrical Engineering

Autumn Semester 2020

Design and Development of a Sensor
Network Architecture for Hyperloop

Vehicles

Semester Project

Luca Rufer
lrufer@student.ethz.ch

January 2021

Supervisor: Dr. Michele Magno, michele.magno@iis.ee.ethz.ch

Professor: Prof. Dr. L. Benini, lbenini@iis.ee.ethz.ch

Acknowledgements

I would like to thank the Integrated Systems Laboratory (IIS) and especially my super-
visor Dr. Michele Magno for making this Semester Project possible and for providing
the necessary materials to realize a functioning prototype.
I also want to thank the whole Swissloop team for supporting me with ideas, materials and
tools during this project, especially the electrical lead Philip Wiese and the operations
lead Yvan Bosshard. The many conversations we had allowed for great advancements in
the project. Without them, this project would not have been possible.

ii

Abstract

In this project, a sensor network architecture based on a linear bus topology using the
Controller Area Network (CAN) protocol was developed to replace the current sensor
topology that Swissloop used in past years. Swissloop builds Hyperloop vehicles based
on Linear Induction Motors (LIMs), which require a wide range of sensors to control
the vehicle end ensure safety. The sensor network is based on a layered approach and
provides features like time synchronization of nodes, address management and sending
commands. The system is highly configurable to allow for many different use-cases.

A special adapter Printed Circuit Board (PCB) was developed to connect sensors to the
network. The adapter supports a wide range of digital interfaces and can also collect
various analog signals.

iii

Declaration of originality

The VigQed declaUaWiRQ Rf RUigiQaliW\ iV a cRPSRQeQW Rf eYeU\ VePeVWeU SaSeU, BachelRU¶V WheViV,
MaVWeU¶V WheViV aQd aQ\ RWheU degUee SaSeU XQdeUWakeQ dXUiQg Whe cRXUVe Rf VWXdieV, iQclXdiQg Whe
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

í I haYe cRPPiWWed QRQe Rf Whe fRUPV Rf SlagiaUiVP deVcUibed iQ Whe µCitation etiquette¶ iQfRUPaWiRQ
sheet.

í I have documented all methods, data and processes truthfully.
í I have not manipulated any data.
í I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Contents

List of Acronyms ix

1. Introduction 1
1.1. Hyperloop . 1
1.2. Swissloop . 1

2. Background 3
2.1. Sensor Network Architecture of previous Swissloop Pods 3

3. Network Architecture 6
3.1. Network Topology . 6
3.2. Communication Protocol . 7
3.3. Software Architecture . 8
3.4. Sensor Support . 9

4. Design Implementation and Results 12
4.1. Software implementation . 12

4.1.1. Network Layer . 12
4.1.2. Session Layer . 16
4.1.3. User Interface . 18
4.1.4. Device Layer . 19
4.1.5. Sensor Layer . 19

4.2. Hardware Implementation . 19
4.2.1. PCB Components . 20
4.2.2. Sensor Compatibility . 23

4.3. Performance . 23
4.3.1. Message duration and bus load . 23
4.3.2. Latency . 25
4.3.3. Time Synchronization . 25

v

Contents

5. Conclusion and Future Work 26
5.1. Conclusion . 26
5.2. Future Work . 26
5.3. Implementation on Swissloop 2021 Pod . 27

A. PCB Schematics 28

vi

List of Figures

2.1. Sensor locations of the Swissloop 2020 Competition Pod 4
2.2. VCU PCB of the 2020 Swissloop Pod, Top View. 5
2.3. VCU PCB of the 2020 Swissloop Pod, Bottom View. 5

3.1. Star Network Topology . 7
3.2. Bus Network Topology . 7
3.3. Example topology of the sensor network with roles 9
3.4. Division of the CAN Message Identifier Field 9
3.5. Message Types . 10
3.6. Sensor signal types . 11

4.1. Software stack for network master and listeners 13
4.2. Software stack for sensor nodes . 14
4.3. Time drift and drift compensation . 15
4.4. Address Management: State machine for network master 17
4.5. Address Management: State machine for sensor node 18
4.6. Top view of the Sensor Interface PCB with key components 20
4.7. Bottom view of the Sensor Interface PCB with key components 21
4.8. Sensor signal filter circuit . 22
4.9. Fully Assembled Prototypes of the Adapter PCB 24
4.10. Time difference between two nodes with time synchronization. 25

vii

List of Tables

4.1. Component example values for hardware filter 22
4.2. Bus load examples . 24

5.1. Sensors Boards on the Sensor Bus in the 2021 Swissloop Pod 27

viii

List of Acronyms

ADCAnalog to Digital Converter

CANController Area Network

CAN FDController Area Network with Flexible Data rate

CRCCyclic Redundancy Check

DHCPDynamic Host Configuration Protocol

EMIElectromagnetic Interference

GPIOGeneral-Purpose Input/Output

HALHardware Abstraction Layer

I2C Inter-Integrated Circuit

IC Integrated Circuit

IIS Integrated Systems Laboratory

JTAGJoint Test Action Group

LEDLight-Emitting Diode

LIMLinear Induction Motor

MACMedium Access Control

MCUMicrocontroller Unit

ix

List of Acronyms

OPAMPOperational amplifier

PCBPrinted Circuit Board

RMSRoot Mean Square

SPISerial Peripheral Interface

STMSTMicroelectronics

SWDSerial Wire Debug

UARTUniversal asynchronous receiver-transmitter

USARTUniversal synchronous and asynchronous receiver-transmitter

VCUVehicle Control Unit

x

Chapter 1
Introduction

1.1. Hyperloop

In 2013, SpaceX and Tesla CEO Elon Musk published a white-paper called Hyperloop
Alpha [1], where they describe the Hyperloop concept as a "fifth mode [of transportation]
after planes, trains, cars and boats" to transport passengers and goods at velocities of
up to 1220 km/h. The main idea behind the Hyperloop concept is the use of pressurized
vehicles, called pods, in a near vacuum tube. The pods use contact-less propulsion and
levitation to keep friction as low as possible.
To further promote his idea, Musk organized an annual Hyperloop Competition that first
took place in 2017 and last took place in 2019. There, student teams from around the
world competed against each other to build a self-propelled prototype that reaches the
highest possible velocity. For the competition, SpaceX built a 1.2 km long near-vacuum
test track in Hawthorne, California.

1.2. Swissloop

Swissloop [2] is a student organization with students from ETH Zurich and other Swiss
universities that participates in the Hyperloop Competition since the first competition.
In the 2019 competition, the team reached the second place with a maximum speed of
252 km/h using their custom build linear induction motor and inverter. In 2020, the
team built another Hyperloop Prototype called Simona de Silvestro, where the team
used the knowledge gained in the previous year to improve the linear induction motor
and inverter. However, due to the COVID-19 pandemic it was not possible for the team
to participate in any competition.
Swissloop planes to participate in the European Hyperloop Week [3] in July 2021, where

1

1. Introduction

simultaneous levitation and propulsion using a linear induction motor will be demon-
strated with a new Hyperloop prototype.

2

Chapter 2
Background

This chapter aims to provide some more information on why this project was realized by
covering previous Swissloop pods and their sensor network architecture in more detail.
It is especially focused on the latest functional pod built by Swissloop in 2019 to 2020,
called Simona de Silvestro. For this Hyperloop prototype, at first a 2.2m long pod was
planned, but due to the cancellation of the SpaceX Hyperloop Competition, a smaller
1.3m variant was realized. The realized variant contains all the Systems from the initial
design, but just in a smaller size or number. As the following section contains a mix of
information from both designs, the initially designed pod and the realized smaller one
will further be referenced as Competition Pod and Prototype Pod, respectively.

2.1. Sensor Network Architecture of previous Swissloop
Pods

In the four Hyperloop prototypes built by Swissloop from 2016 to 2020 a Star Network
topology was used, where all sensors of the pod are connected directly to a central star
point called the Vehicle Control Unit (VCU). The 2020 Competition Pod was planned
to have 26 sensors for vehicle control, excluding the sensors for the battery management
system and the inverter. These sensors are distributed all over the pod as shown in
Figure 2.1. The Prototype Pod with the reduced number of systems only has 17 vehicle
sensors. The sensors for the Competition Pod have different signal types: 2 NPN1 sensors,
10 thermistors, 10 sensors with current output, 3 sensors with RS485 communication
and an encoder. The thermisor values are converted on an external Analog to Digital
Converter (ADC) and sent to the VCU using the Inter-Integrated Circuit (I2C) protocol,

1An NPN or PNP sensor basically acts as a switch

3

2. Background

Figure 2.1.: Sensor locations of the Swissloop 2020 Competition Pod

while the signals from the other sensors are combined into a total of 11 cables connected
directly to the VCU. This results in 19m of sensor cable in the 2.2m long Competition
Pod and almost 10m of sensor cable used in the 1.3m long Prototype Pod. The cables
and connectors weigh about 3 kg in the Competition Pod and 1.5 kg in the Prototype Pod.
The cables and connectors are therefore a major contributor to the total weight and cost
of the prototype. Additionally, the PCB for the VCU shown in Figure 2.2 and 2.3 is
quiet large, as the connectors require a lot of space.

4

2. Background

Figure 2.2.: VCU PCB of the 2020 Swissloop Pod, Top View.

Figure 2.3.: VCU PCB of the 2020 Swissloop Pod, Bottom View.

5

Chapter 3
Network Architecture

The goal of this project is do design and test both software and hardware for a sensor
network that improves on the flaws of the sensor architecture that previous Swissloop
pods used. In this project, an architecture is developed that is configurable and compat-
ible with a large number of sensors and cover all the needs of a Hyperloop pod sensor
network. The resulting software and hardware will be integrated into the new Pod that
Swissloop is currently developing.

3.1. Network Topology

The foundation of a network architecture is its topology. As mentioned in Chapter 2.1,
previous Hyperloop pods built by Swissloop based their sensor networks on a star topol-
ogy (Figure 3.1). While this topology is well suited and easy to implement for a small
amount of sensors, it is not scalable for larger amounts of sensors and inefficient regarding
size and weight, especially if multiple sensors are located close to each other, but every
sensor has a separate connection to the VCU.
As Hyperloop pods are relatively long and narrow, a linear topology can reduce the
amount of cable used to a single one from the back to the front with stubs to the sensor
locations and therefore reduce weight and cost. Therefore, a linear bus topology was
chosen for this project, as shown in Figure 3.2. A linear bus topology also has the advan-
tage that sensors can be added to or removed from the system at any point, making the
design process much easier. In order to be able to connect a variable amount of sensors
with different outputs to a common bus, a interface to the bus is needed. This interface
is responsible for reading data from the sensor and sending it to the communication bus
in an appropriate form.

6

3. Network Architecture

Figure 3.1.: Star Network Topology

Figure 3.2.: Bus Network Topology

3.2. Communication Protocol

The CAN Protocol was chosen as the communication protocol, as it is a multi-master
priority-based bus protocol with non-destructive content-based arbitration [4]. It was
primarily developed for automotive applications. The CAN protocol has many useful
properties, as listed below:

• Multi-Master: The network does not require a master to decide which node is
allowed to send a message frame. This allows a high degree of freedom to be given
to the sensor nodes and allows them to send their data autonomously without the
need for the network master to poll the sensor nodes for new data. Furthermore,
this also reduces the latency of the data sent by the sensor nodes.

• Medium Access Control (MAC) Realized in Hardware: Bus access control does not
have to be implemented in software, which makes the implementation much easier
and more resistant to errors.

• Content-based Arbitration: CAN frames have an identifier at the beginning of each
frame, which is used to determine the priority of the frame. If multiple nodes on
the bus try to send a frame simultaneously, the node sending the frame with lower
priority stops sending and the message with the higher priority can continue to
send its frame without restarting the transmission.

• Integrated Cyclic Redundancy Check (CRC): The integrated CRC makes the pro-
tocol more resistant to single bit flip errors or error bursts cased by e.g. Electro-
magnetic Interference (EMI).

7

3. Network Architecture

• Integrated Error Handling: a large variety of errors within a transmission are de-
tected by hardware and frames can be automatically re-transmitted in case of an
error.

The new version of CAN, Controller Area Network with Flexible Data rate (CAN FD),
allows to change the bitrate in a certain part of the message called data phase, which
contains the data and the CRC. Additionally, a message frame can contain up to 64
Byte instead of up to 8 Bytes per frame, and the CRC was improved. Many modern
Microcontroller Units (MCUs) already have an integrated CAN FD peripheral.

3.3. Software Architecture

To distinguish the devices connected to the sensor bus, roles are used. Every node on
the bus can have any combination of following roles:

• Network Master: The network master is responsible for the address assignment and
configuration of the other nodes on the bus. There is exactly one network master
per sensor bus.

• Sensor Node: A sensor node is a node that collects data from a sensor connected
to it and sends this data to the bus. A network normally has multiple sensors. The
number of sensor is limited to 62 for reasons explained further below.

• Listener: A listener collects the data sent by the sensor nodes. It does not send
any data itself. A network can have multiple listeners.

The role of the listener allows other systems (like an inverter) of a pod to be connected
directly to the sensor bus. These systems can access the data directly and do not have
to wait for the data to be relayed by the network master, which massively reduces the la-
tency of the data. For most use-cases, the VCU acts as the network master and a listener
in order to control the network and collect the data from the sensor nodes. Figure 3.3
shows an example of a sensor network with a VCU on the right acting as the network
master (green) and listener (gray), multiple listeners (gray) and sensors (blue) with a
bus adapter (yellow). Some sensor nodes also have the listener role to collect data from
other sensor nodes. In such cases, the adapter is indicated as yellow and gray. This can
be useful if a sensor produces data depending on other sensors.

A CAN frame can have either an 11-bit normal or a 29-bit extended identifier. The sensor
network only uses the shorter 11-bit identifier as it suffices to implement the necessary
functionalities. The division of the 11-bit identifier is shown in Figure 3.4. The lower
6 bits are used to determine the address of the device and the upper 5 bits are used to
identify the type of the message.
Only sensor nodes have an address whereas the network master and the listeners have
no specific addresses. A listener does not have an address because it cannot send any

8

3. Network Architecture

Figure 3.3.: Example topology of the sensor network with roles

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0SOF RRS

5 Bit Message Type 6 Bit Node Address

11 Bit Message Identifier

Figure 3.4.: Division of the CAN Message Identifier Field

data on the bus. If a master wants to communicate with a specific sensor node, it sends
a message with the address of the sensor node. If the master wants to send a message to
all nodes, it sends a message using the broadcast address 0x00. Another special address
is the unassigned address 0x3F, which the sensors nodes use that have not been assigned
an address yet. The process of address assignment is elaborated in Section 4.1.1 under
Address Management.
The 5 bits used for the type of the message allow for 32 different message types. An
overview of the existing message types is shown in Figure 3.5. The order of the message
type ensures that more important message types have a lower type number and therefore
a higher priority. This guarantees that important messages cannot be blocked or delayed
by less important messages. The message type also dominates the address in regard to
priority, as the type occupies the higher 5 bits of the CAN identifier.

3.4. Sensor Support

The goal of the sensor network is to support a large variety of sensor signals and at least
the signal types of the sensors used in previous Swissloop pods described in Section 2.1.
The signal types shown in Figure 3.6 cover common sensor outputs and these will be
supported by the network adapter.

9

3. Network Architecture

ID

N
am

e
By

te

Se
nd

ab
le

 b
y

0
1

2
3

4
5

6
7

M
as

te
r

N
od

e
0x

00

Re
se

rv
ed

0x

01

In
it/

re
se

t
Fl

ag
s

X

0x
02

Re

se
rv

ed

0x
03

Ti

m
e

Sy
nc

Ti

m
es

ta
m

p

X

0x

04

Re
se

rv
ed

0x

05

Er
ro

r
Fl

ag
s

X
X

0x
06

Ad

dr
es

s A
ss

ig
nm

en
t

Fl
ag

s
N

od
e

Ad
dr

N

od
e

ID

X

0x
07

Ad

dr
es

s R
eq

ue
st

Fl

ag
s

N
od

e
ID

X
0x

08

Co
m

m
an

d
ca

llb
ac

k
Fl

ag
s

Co
m

m
an

d
ID

X
0x

09

W
rit

e
ca

llb
ac

k
Fl

ag
s

Ad
dr

es
s

X

0x
0A

Re

ad
 re

qu
es

t c
al

lb
ac

k
Fl

ag
s

Ad
dr

es
s

Da
ta

X
0x

0B

Re
se

rv
ed

0x

0C

Co
m

m
an

d
Ac

k
Fl

ag
s

Co
m

m
an

d
ID

X
0x

0D

W
rit

e
re

qu
es

t A
ck

Fl

ag
s

Ad
dr

es
s

X

0x
0E

Re

ad
 re

qu
es

t A
ck

Fl

ag
s

Ad
dr

es
s

X

0x
0F

Re

se
rv

ed

0x
10

Co

m
m

an
d

re
qu

es
t

Fl
ag

s
Co

m
m

an
d

ID

O
pt

io
na

l B
yt

e-
w

ise
 D

at
a

X

0x
11

W

rit
e

re
qu

es
t

Fl
ag

s
Ad

dr
es

s
Da

ta

X

0x
12

Re

ad
 re

qu
es

t
Fl

ag
s

Ad
dr

es
s

X

0x
13

Re

se
rv

ed

0x
14

Re

se
rv

ed

0x
15

Re

se
rv

ed

0x
16

Se

ns
or

 d
at

a
O

pt
io

na
l D

at
a

X

0x
17

Re

se
rv

ed

0x
18

Re

se
rv

ed

0x
19

Re

se
rv

ed

0x
1A

Re

se
rv

ed

0x
1B

Re

se
rv

ed

0x
1C

Re

se
rv

ed

0x
1D

Re

se
rv

ed

0x
1E

Re

se
rv

ed

0x
1F

Re

se
rv

ed

Figure 3.5.: Message Types

10

3. Network Architecture

Sensor Signal

Analog

Resistance Current Voltage Encoder /
Counter

GPIO/
Interrupt PWM

Other

Digital

SPI I2CRS485UART/USART

Figure 3.6.: Sensor signal types

11

Chapter 4
Design Implementation and Results

This chapter covers the actual implementation of the sensor network. It covers both the
implementation in software and the hardware implementation of the adapter PCB. At
the end of this chapter, a few performance metrics resulting from the implementation are
shown.

4.1. Software implementation

The software stack is divided into multiple layers with distinct functionality. The software
stack differs depending on the role of the network node. The software stack for both the
network master and the listeners is shown in Figure 4.1 and the software stack for the
sensor node is shown in Figure 4.2. The lowest layer, the physical layer, is largely
defined by the CAN standard [4]. The layer above the physical layer, the data link layer,
is completely defined by the CAN standard and implemented in hardware in a CAN
controller. The lowest layer implemented in software a Hardware Abstraction Layer
(HAL). As described in Subsection 4.2.1, a STMicroelectronics (STM) MCU was used
and therefore the HAL provided by the chip manufacturer was used for this layer.

4.1.1. Network Layer

The network layer is built on top of the HAL. Its main task is to pack and unpack
the CAN messages and configuring the CAN transmissions. Additionally, it provides a
time base for all layers above and it is responsible for time synchronization and address
management, which will be described in the following sections.

12

4. Design Implementation and Results

User Software

FD CAN

CAN FD Controller

CAN FD Transceiver
Sensor Interface Hardware

STM HAL

Sensor Interface Software

Physical Layer

Data Link Layer

Network Layer

FDCAN Hardware
Abstraction Layer

Session Layer

Interface Layer

User Layer

Hardware
Software

Time and Sync Address
Management

TIM Hardware
Abstraction Layer

Memory Command

Figure 4.1.: Software stack for network master and listeners

Time and synchronization

For the network layer and all layers above a local system time is established. System
time is a 64 Bit value, which holds the time in microseconds since system startup. The
lower 16 Bits of the timestamp taken from a hardware timer, and the upper 48 bits are
taken from an overflow counter of said counter.

The sensor nodes have a high degree of autonomy and can perform actions like sampling
the sensor regularly by themselves. This, however, makes the sensor nodes susceptible to
time drift, caused by imperfections of oscillators. Multiple sensor nodes can only perform
action or sample the sensors simultaneously if they have the same system time, which
requires time synchronization. Additionally, some sensors like event triggered sensors
require the global system time as part of the data they produce, which also requires a
network-wide time synchronization.

While many synchronization algorithms like [5] and [6] suggest algorithms that correct the
time drift by jumping in time, this is not really a viable option for this system, as the sys-
tem uses the capture-compare channels of the system time timer. Instead, an algorithm
that adjusts the prescaler of the system timer was implemented to speed up or slow down
time for nodes that are behind or ahead of the master’s system time. The adjustment
of the prescaler changes the slope s of the difference of local times ∆t = tslave − tmaster,

13

4. Design Implementation and Results

User Software

FD CAN

CAN FD Controller

CAN FD Transceiver
Sensor Interface Hardware

STM HAL

Sensor Interface Software

Physical Layer

Data Link Layer

Network Layer

FDCAN Hardware
Abstraction Layer

Session Layer

Device Layer

Sensor Layer

Hardware
Software

Time and Sync Address
Management

TIM Hardware
Abstraction Layer

Memory Command

Other Hardware
Abstraction Layer

Sensor

Figure 4.2.: Software stack for sensor nodes

as seen in Figure 4.3. The slope sj is given by Equation 4.1, where d is the time drift,
P0 is the default prescaler value and Pj is the prescaler value during time sync period j.
The time difference ∆tj+1(t) can be calculated using Equation 4.2, which can be derived
from Figure 4.3.

sj = d+
P0 − Pj
P0

(4.1)

∆tj+1(t) = ∆tsync,j + sj+1 · (t− (tj + tsync)) for tj + tsync ≤ t ≤ tj+1 + tsync (4.2)

The network master also acts as the time master, which periodically sends a reference
message. Using the message timestamp functionality of the CAN peripheral of the MCU
[7, p. 1900], the send timestamp of the reference message is stored by the time master
as tj . The time slaves store the receive timestamp of reference message using the same
mechanism as tj,α. As soon as the time master finished sending the reference message,
it sends a sync message containing the timestamp tj of the last sent reference message.
At local slave time tj,β right after the slave received the sync message, the slave executes
Algorithm 1 to update the timer prescaler. The algorithm aims to keep the Root Mean
Square (RMS) time difference (see Equation 4.3) as low as possible. The RMS time
difference is minimal for the Pj+1 derived in Equation 4.4. As the exact value of the

14

4. Design Implementation and Results

t

 ∆t

t j t j+1

T

t sync t sync

∆t ref,j

∆t sync,j

∆t ref,j+1

∆t sync,j+1

slope s j

slope s j+1

slope s j+2

t j,α

t j,β

t j+1,α

t j+1,β

Figure 4.3.: Time drift and drift compensation

oscillator drift d is not known, it has to be estimated using Equation 4.5, which can be
derived from Figure 4.3.

E2
rms,j+1 =

1

T

∫ tj+1+tsync

tj+tsync

(∆tj+1(t))2dt = ∆t2sync,j+∆tproc,j ·sj+1 ·T +
1

3
·s2
j+1 ·T 2 (4.3)

dE2
rms,j+1

dPj+1

!
= 0⇔ Pj+1 =

3

2
· P0 ·

∆tsync,j
T

+ P0 · (1 + d) (4.4)

P0 · (1 + d) =
(∆tsync,j −∆tsync,j−1)

T
· P0 + Pj (4.5)

Address Management

As the address of a node reflects its priority to send messages on the bus, the addresses
have to be manageable and configurable by the network master. Therefore, an address
assignment and management process was implemented. Initially, a process similar to
the Dynamic Host Configuration Protocol (DHCP) was planned. However, the process
of nodes actively requesting addresses was deemed as unnecessarily complicated, as this
would require the implementation of an additional MAC: All sensor nodes would send
their request simultaneously upon startup, resulting on collisions on the bus because all
nodes send with the same CAN identifier. Because in a normal application of this sensor
network all connected sensors are known in advance anyway, it was easier to implement
a process where nodes are assigned addresses by the network master without sending a
request first.

15

4. Design Implementation and Results

Algorithm 1: Time synchronization of time slaves
input: Timestamp tj when the reference message was sent, in master time
input: Timestamp tj,α when the reference message was received, in slave time
input: Timestamp tj,β when the sync message was received, in slave time

1 ∆tref,j ← tj,α − tj ;
/* if the time difference is too large, jump in time */

2 if |∆tref,j | > ∆tref,max then
3 current_time← tj + tj,β − tj,α;
4 Pj+1 ← P0; // Reset prescaler to default value
5 ∆tsync,j ← 0; // No time drift after time jump
6 Pd,est ← P0; // Reset to default value (d=0)
7 else
8 ∆tsync,j ←

tj,β−tj−1,β

tj,α−tj−1,β
· (∆tref,j −∆tsync,j−1) + ∆tsync,j−1;

9 Pd,est,new ←
(∆tsync,j−∆tsync,j−1)

T · P0 + Pj ; // Eq. 4.5
10 Pd,est ← α · Pd,est + (1− α) · Pd,est,new; // Filter Pd,est

11 Pj+1 ← 3
2 · P0 · ∆tsync,j

T + Pd,est; // Eq. 4.4
12 end
13 UpdatePrescaler(Pj+1)

At the beginning of this process, all sensor nodes use the unassigned bus address 0x3F.
Every sensor node has a unique 32-bit identifier, which is used to differentiate between
the nodes. Using a predefined list of address - node ID pairs, the network master assigns
the addresses one by one using a dedicated address assignment message. The message
contains the node ID and the CAN address assigned to it. If a sensor nodes gets an
address assignment message containing its node it, it buffers the CAN address. However,
the sensor node still continues to communicate with its old address. When the network
master finished sending all addresses, it sends an init message with a special flag set
indicating the nodes to update their network layer with the newly assigned address. The
state diagrams for the network master and sensor node can be seen in Figure 4.4 and
Figure 4.5, respectively.

4.1.2. Session Layer

The main task of the session layer is handling communication sequences that consist of
multiple messages. These primarily are the write, read and command request. They will
be further explained in the subsections below. All three requests consist of a request
by the master, followed by an acknowledgement from the sensor node that indicates if
the request is granted. If the request was granted, the sensor node also sends a callback
message after the request was performed, e.g. the data was written/read for a write/read
request or the command has finished execution in case of a command request.

16

4. Design Implementation and Results

Reset

Assign Address

Wait Node Update

Finished

ADRM start | Network Layer finished Init | -

Wait Ack

- | all addresses sent and Tx buffer not full | Send AMU

- | Node Update Timeout | -

Reset | - | Clear Address Table

Inputs:

Reset
ADRM start
Receive Address Request

Outputs:

Clear Address Table
Send Address Assign
Send AMU

Specific Transitions from State A to State B:

General Transitions from any State to State
B:

A '-' as input means this is checked in the
update of the ADRM.
If a both Specific and a General Transition
with the same input and conditions, are
applicable from a state, only the Specific
Transition will be executed.
If an input is applied with no applicable
condition from the current state, the input
will be ignored.

Input | Condition | Output

Input | Condition | Output

B

A

B

Address Request | ack bit and correct node id | continue to next entry, reset current entry failed counter
- | timeout and current entry failed > 16 times | continue to next entry, reset current entry failed counter, mark entry as failed

- | timeout | current entry failed count++

- | not all addresses sent and Tx buffer not full | Send Addr. Assign

Figure 4.4.: Address Management: State machine for network master

Memory

The sensor interface memory supports up to 256 memory sections with up to 256 32-bit
words each. The sensor interface has four memory sections implemented:

• Error Code Section: This section holds which error flags are set for the whole sensor
interface software. It also holds masks to filter which error flags will be reported to
the other nodes on the network if they change. Merging all these error codes into
a single structure allows for easy read and clear access by the master.

• Hardware Section: This section holds the hardware definitions for the sensor node
interface. It depends on the connected device and is used to indicate the presence
or absence of certain components or the values of components like resistors or
capacitors that can be varied.

• General SI Section: This section holds the general sensor interface configuration,
like which sensor is connected and at which period it shall be sampled.

• Sensor Specific Section: This section can be used to pass configurations or infor-
mation directly to the selected sensor.

While all of the above sections exist for the sensor node role, only the error code section
exists for the network master and listener. The network master can read or write a 32-bit

17

4. Design Implementation and Results

Inputs:

Reset
Address Assignment
Init with AMU bit

Outputs:

Clear Node Address
Address Acknowledgement
Update new Node Address
Set State to Offline

Specific Transitions from State A to State B:

General Transitions from any State to State
B:

A '-' as input means this is checked in the
update function of the ADRM.
If a both Specific and a General Transition
with the same input and conditions are
applicable from a state, only the Specific
Transition will be executed.
If an input is applied with no applicable
condition from the current state, the input
will be ignored.

Input | Condition | Output

Input | Condition | Output

B

A

B

Reset

Wait Address

Wait AMU

Finished

- | Network layer finished init | -

Offline

Address Assign | own node id | Addr. Ack.

- | Timeout | Set State to Offline

Init with AMU | - | Update Node address

Reset | - | Clear Node Address

- | Timeout | Set State to Offline

Address Assign | own node id | Addr. Ack.

Address Assign | own node id | Addr. Ack.

Figure 4.5.: Address Management: State machine for sensor node

word from or to the sensor node memory by using a read or write request. The sensor
node can write-protect each 32-bit to prevent the master from overwriting data.

Command

The network master can let the sensor nodes execute commands using a command re-
quest. Commands can be directed either to the sensor interface software in general, to
the interface device or directly to the sensor layer. Commands for the latter two depend
on the device and the sensor, respectively. A variable amount of data between 0 and 60
Bytes can be sent with the command to give additional information for the command
which has to be executed. Examples for commands are Start Data Collection, which is
addressed to the interface software in general, or Enable Sensor Power, on which a device
supporting this command would enable power to the sensor.

4.1.3. User Interface

The user interface is supposed to make the interaction with the sensor interface easier.
It is especially focused on network startup, configuring sensors as well as starting and
stopping sensor data collection. However, it does not offer all the functionality that the

18

4. Design Implementation and Results

session layer offers, which means that the user has to interface directly with the session
layer for more in-depth usage of the sensor interface software.

4.1.4. Device Layer

The device layer abstracts the sensor interface hardware. It provides the hardware ini-
tialization functions for the peripherals, configures and redirects interrupts where needed
and abstracts the hardware to make the programming of the sensors easier.

4.1.5. Sensor Layer

Programming the actual interface with the sensor happens in the sensor layer. For
every sensor that can be connected, a separate header-source pair is written that has to
implement at least the functions listed below:

• init : In the init function, the communication with the sensor is initialized. This
varies from sensor to sensor and can be actions like initializing a communication
peripheral or the ADC.

• update: This function is called regularly upon which regular task like state or health
checks can be executed.

• get data: When this function is called, a data item will be collected from the sensor.
This function is called either periodically by the device if a sampling period is set
and/or upon a command from the master. When the data item is collected from
the sensor, it is passed to a predefined send data function implemented by the
device, which sends the collected data to the network bus.

• deinit : A function used to de-initialize the sensor, e.g. shut down the sensor, release
all occupied peripherals and memory.

• execute command : Execute a command requested by the master. What the com-
mand does largely depends on the sensor. The command is further explained in
Section 4.1.2.

4.2. Hardware Implementation

As mentioned at the beginning of this chapter, the sensors have to be connected to the
network using some kind of adapter. This adapter was realized as a custom made PCB.
For any other devices on the bus that are not sensor nodes, no specific hardware was
realized. The only hardware requirement for these is the availability of a CAN FD inter-
face. The main design parameters of the adapter PCB were to keep it as small and light
as possible, while still being compatible with a large range of sensors. The PCB is shown

19

4. Design Implementation and Results

in Figure 4.6 and 4.7 with its key functional blocks and components encircled. The size
of the PCB is 45mm by 17mm, the schematics of the PCB can be found in the appendix.

Figure 4.6.: Top view of the Sensor Interface PCB with key components

4.2.1. PCB Components

In the center of the top side, the MCU (Label 1) is located. The decision to use a MCU
from STM was made early on in the project, as they produce a large variety of MCUs
and many of those feature a CAN FD peripheral. As the MCU on the sensor interface
PCB does not have to be a high performance MCU, the selection was focused on the
STM32L5 product line, a low-power MCUs line with an integrated CAN FD periperal.
Finally the STM32L552 MCU was chosen due to the availability of a development board
[8].
The PCB has three connectors: The first one is the bus connector (Label 2), which has
the CAN-High and CAN-Low signal lines (inscription H and L, respectively), a ground
connection (V-), a 3.3V supply connection to power the Integrated Circuits (ICs) on the
PCB and a sensor voltage connection (V+). As the sensors on the bus might require
different supply voltage levels and therefore multiple different supply voltage levels are
needed on the bus, no fixed connector was used for the bus connector. For the con-
nections, the wires of the bus cables can be soldered directly into the pad holes of the
respective connector. To provide more stability, the cable can be fixed using a 3D printed
part that is screwed to the PCB with the M2 screw holes in the corners. The pads of
the connector have a 100 mil pitch, allowing standard pin header to be directly soldered
onto the PCB for testing and debugging purposes.
The second connector is the sensor connector (Label 3). To allow many different con-
figurations of sensors to be connected, there is no fixed connector used and the same

20

4. Design Implementation and Results

considerations as for the bus connector apply. The connector has a pad for ground (in-
dicated with -), one for sensor supply (indicated with +) and one for a reference voltage
(indicated with r). For communication with the sensor, five signal pads (indicated with
1 to 5) are used. Each of these five signals is filtered and passed to the MCU. The filters
are discussed further below.
The third and last connector is a 14 pin 50 mil pitch connector used to program and
debug the MCU. The pinout is compatible to the STLink-V3 [9] and supports Joint Test
Action Group (JTAG) and Serial Wire Debug (SWD) interface for programming and
debugging. It also features a virtual COM port that can be used for debugging using
Universal asynchronous receiver-transmitter (UART).
Additional components on the top side worth mentioning are the external oscillators
(Label 5), the CAN transceiver (Label 6) including optional termination resistor, a op-
tional full-duplex RS485 transceiver (Label 7) and three Light-Emitting Diodes (LEDs)
(Label 8) that can be programmed in the sensor layer.

Figure 4.7.: Bottom view of the Sensor Interface PCB with key components

The bottom side of the adapter PCB has a precision 2.5V voltage reference IC (Label 9)
for the internal ADC of the MCU and can be used by sensors like thermistors as an
accurate voltage reference.
The largest IC on the bottom side is a high side power switch (Label 10) that can be
used to enable and disable the sensor supply power, which makes it possible to shut
down the sensor by software when it is not needed. This also allows to reduce the power
consumption of the system.
The PCB also features a reset button (Label 11) to reset the MCU. It is only intended to
be used during debugging and is removed when the PCB is integrated into the vehicle.

The signal filters (Label 12) are used to filter the signals from the sensors and provide
pull-up or pull-down on signal lines if necessary. Which components are present and
what value these resistors and capacitors have depends on the signal type and sensor.

21

4. Design Implementation and Results

MCUSensor
Connector RS

RD

RU

CF DF

3.3 V

Figure 4.8.: Sensor signal filter circuit

Table 4.1.: Component example values for hardware filter

Sensor signal RS RU RD CF Resulting filter output

Analog Current, 4...20mA 22Ω NC 120Ω 4.3 µF 0.48...2.4V, fg = 2kHz
Analog Voltage, 0...5V 500Ω NC 500Ω 636 nF 0...2.5V, fg = 1kHz
Thermistor, e.g. PT100
with R0 = 1kΩ 10Ω NC 1kΩ 16 µF Temp. dependant Voltage,

fg = 1kHz

SPI MISO 22Ω 10 kΩ NC NC Pull-up and reduction of
signal ringing

RS485, any of Tx/Rx +/- NC NC NC NC Filter not used, connect
R27 to R30 instead

No filter 0Ω NC NC NC Filter bypassed

The Zener diodes are used to protect the MCU from voltage spikes. Each of the five
signal pads has its own filter. A circuit diagram of the filter can be seen in Figure 4.8.
While this system allows for a wide range of possibilities, it has the downside that - once
the filter components are soldered - it can only be used with a specific type of sensor.
However, as these boards are designed to be installed in a vehicle permanently, this is
not a big concern. Some examples for filter values are given in Table 4.1. If RU is not
used, the corner frequency fg of a filter is given by Equation 4.6.

fg =
1

2π ·RS · CF
· (1 +

RS
RD

) (4.6)

22

4. Design Implementation and Results

4.2.2. Sensor Compatibility

The sensor interface PCB is compatible with a large range of sensors. The hardware was
implemented in a way that at least the sensor types listed in Figure 3.6 are supported.
The implementation made even more sensors types possible than listed in Figure 3.6. In
some cases, multiple sensor types can be combined with each other. The possible sensor
interfaces are listed below:

• Digital communication interfaces for Serial Peripheral Interface (SPI) in master
and slave mode, Universal synchronous and asynchronous receiver-transmitter (US-
ART), I2C and RS485.

• One Comparator and two Operational amplifiers (OPAMPs) with internal ADC
connection.

• Four input capture or output compare channels to system timer with microsecond
resolution or two input capture or output compare channels to timers for counter
or encoder mode.

• ADC input, external interrupt or General-Purpose Input/Output (GPIO) function-
ality for each of the five signal pads.

4.3. Performance

The performance of the sensor network was evaluated using manufactured versions of
the adapter PCBs discussed above and shown in Figure 4.9. Several example sensors
were written to acquire the data shown in this chapter and test the functionality of
the sensor network and explore its limits. The performance of the network depends on
various factors like the number of sensors on the bus, the update frequency of each of the
sensors and sensor data size for each sensor. The performance parameters calculated in
this section are valid when the sensors on the network are collecting data, the nodes are
not being configured (e.g. no write, read and command requests) and no errors occur.
Also, the bus load caused by the time sync is neglected.

4.3.1. Message duration and bus load

The worst-case duration1 that a message occupies the sensor bus can be calculated using
Equation 4.7 [4], assuming a CAN FD format with standard identifier without an error
occurring during transmission. In the Equation, tarb is the arbitration bit time (1Mbps
by default), tdata is the data bit time (5Mbps by default) and n is the number of data
bytes in the message. A number of examples with different data length and samples

1Depending on the CAN identifier and the message data, a different number of stuff bits are inserted
into the message, causing messages with the same amount of data to have different lengths

23

4. Design Implementation and Results

Figure 4.9.: Fully Assembled Prototypes of the Adapter PCB

per second is listed in Table 4.2. The table shows the resulting bus load and package
utilization. Sensors that produce a low number of Bytes per data item have a very low
packet utilization and are therefore less efficient. If the bus load it too high, starvation
can occur for sensors with a low priority. During testing, the network was able to handle
a theoretical bus load above 97% for an extended period of time without loosing any
data.

tmsg = 32 · tarb +

{
(33 + 10 · n) · tdata, if n < 20

(38 + 10 · n) · tdata, otherwise
(4.7)

Table 4.2.: Bus load examples

Number of Data Bytes Data Samples per Second Bus Load Packet Utilization

2 20’000 85.2% 7.5%
4 20’000 93.2% 13.7%
8 17’500 95.6% 23.4%
16 12’000 84.7% 36.3%
20 12’000 95.5% 40.2%
32 8’000 92.9% 49.4%
64 5’000 83.8% 61.1%

24

4. Design Implementation and Results

(a) five seconds test (b) first 100ms of the test

Figure 4.10.: Time difference between two nodes with time synchronization.

4.3.2. Latency

The latency of a data item, e.g. the time difference between the time instant where a
sensor node starts collecting a data item and the time instant where a listener has the
data available, depends on the message size (and thus the data size), the time it takes the
sensor to collect the data item and on the bus load. Under optimal conditions where the
data is immediately available to the sensor and the CAN message can be sent instantly,
the average latency can be as low as 76.2 µs for a data size of 4 Byte. The average
message duration in this case is 33.2 µs and it therefore takes on average 43 µs for the
data to traverse the software layers on the sensor node and the listener.

4.3.3. Time Synchronization

The time synchronization algorithm that was described in Section 4.1.1 was also tested
and its performance evaluated. When sending the time synchronization messages with a
period of 2ms, a RMS time drift of 6.46 µs was achieved. The maximum time difference
between the nodes in this case was measured to be 19.26 µs. The relative oscillator drift of
the nodes was measured to be 0.4%. Figure 4.10a shows the measured difference between
the nodes and Figure 4.10b shows the results from the same test for a shorter time span
to show the influence of the time drift and the time instances where the prescaler is
updated more clearly. Without the time synchronization enabled, the nodes would have
drifted 400 µs apart within the first 100ms.

25

Chapter 5
Conclusion and Future Work

5.1. Conclusion

The sensor network architecture developed in this project provides a robust network
suitable for low and medium speed applications. The overhead caused by the CAN
protocol is too big for high speed applications like fast control loops, but it satisfies the
requirements posed by a Swissloop pod. The developed system is not only lighter than
the system previously used by Swissloop, it is also more configurable and scalable.

The Address management and time synchronization of the network layer allow for syn-
chronization of sensor data collection and allow for better timed data collection. The
memory and commands of the session layer allow for a highly customizeable sensor inter-
face. The user layer for the network master and listener provide an easy-to-use interface
for the functionalities of the network.

The adapter PCB developed especially for the sensor network provides a platform to
which many different kinds of sensors can be connected. The high configurability of the
PCB also allow for a wide range of use cases. During this semester project, the bus was
proofed to work with up to five Nodes at a time. Multiple example senors were written
and tested to confirm that the network functions properly.

5.2. Future Work

The next step in the development of the sensor network is to test it in a larger scale
and in a harsher environment. When the system is built into the Swissloop 2021 Pod, it
will be tested with 11 Nodes on the bus, in a noisy environment near an inverter and a
LIM.

26

5. Conclusion and Future Work

Table 5.1.: Sensors Boards on the Sensor Bus in the 2021 Swissloop Pod

Sensor conn. to board Signal Location Update Freq. Data Size

1 3x Pressure Sensor Analog Current Brake 1000Hz 6 Byte
2 5x NTC Thermistor Variable Resistance LIM 100Hz 10 Byte
2 5x PTC Thermistor Variable Resistance LIM 100Hz 10 Byte
1 Velocity Sensor RS485 Front 100Hz 6 Byte
2 4x Distance Sensor Analog Current Chassis 5000Hz 8 Byte
1 Radar Sensor Analog Current Front 100Hz 2 Byte

The sensor network currently has the flaw that the software of the sensor nodes can
only be updated via the programming/debug connector on the PCB itself. Therefore, all
sensor nodes in a vehicle must always be accessible in order to update the software, and
all nodes have to be updated individually. This problem can be solved by implementing
a firmware actualization method via the CAN bus. This could not be realized during the
semester project, but it will be implemented in the future.

The software currently only contains a handful of sensors. During the project, a few
example sensors were written to test key functionalities of the software and the net-
work. However, these example sensors do still not cover all the possibilities of the sensor
interface PCB and more sensors need to be written for the deployment of the system.

5.3. Implementation on Swissloop 2021 Pod

The sensor network developed in this semester project is going to be implemented in the
Swissloop 2021 Pod. Development and planning for this pod started in September 2020
and is still ongoing as of the end of this semester project. A list of sensors that will be
connected to the sensor bus is shown in Table 5.1. The leftmost column in the table
indicates the number of sensor interface PCBs used, and the second column lists the
number of sensors per PCBs and the type of sensor. The sensors producing the largest
amount of data are the distance sensors which measure the position of the levitating pod
relative to the track. When all sensors listed in Table 5.1 are active, 93’600 Bytes of
payload data are produced per second. Using a time sync period of 2ms, an arbitration
bitrate of 1Mbps and a data bitrate of 5Mbps, this leads to a bus utilization of 67.96%.
The pod has a VCU that acts as a network master and listener to control the sensors
and collect, log and transmit the data from the sensor bus. Additionally, the inverter is
connected to the sensor bus as a listener and uses the data from the distance sensor for
levitation control.

27

Appendix A
PCB Schematics

28

Project:

2021_Sensor_In terface

File:

Dat e:

Dra w ing nu m ber: 1

11 /19 /2020

\ \ d.et hz.ch \ groups \ mavt \ sw issloop \ Sw issloop_21 \ PCB \ 2021_Sensor_In terface \ 2021_Sensor_In terface \ Sensor_In terface.SchDoc

11:0 6:0 0 A M

Form at:

A4 Q

1Rev:

Dra w n by:

Laboratory: Sw issloop

Page of1 7

Sheet:

Luca Rufer

Sensor_In terface.SchDoc

1 2 3 4

1 2 3 4

A

B

C

D

A

B

C

D

JTAG/SW

NRST

CAN

CAN_Standby

Sensor[0..4]

Sensor_EN
RS485_EN

UART
VDDA_EN

LPUART

U_STM32L552CE
STM32L552CE.SchDoc

JTAG/SW

NRST

LPUART

U_JTAGSW
JTAGSW.SchDoc

VDDA_EN

Sensor_EN

U_Power
Power.SchDoc

CAN
CAN_H
CAN_L

CAN_Standby

U_CAN
CAN.SchDoc

Sensor[0..4]Repeat(IN) Repeat(OUT)

Repeat(U_Filter,0,4)
Filter.SchDoc

Sensor

3V3_IN

GND

V_Sensor_in

V_Sensor_out VDDA

GND

Sensor_in

Sensor_in0
Sensor_in2
Sensor_in4

Sensor_in3
Sensor_in1

Se
ns

or
_i

n[
0.

.5
]

RS485_Tx-
RS485_Tx+

RS485_Rx+
RS485_Rx-

DE

UART

U_RS485
RS485.SchDoc

V+ Vr
G N D 1
2 3
4 5

P1

Sensor Header

V+
3V3
G N D
CA N_H
CA N_L

P2

Bus Header

MP8

M2 nut

MP6

M2 nut

MP7

M2 nut

MP5

M2 nut

MP1

M2 Screw

MP4

M2 Screw

MP2

M2 Screw

MP3

M2 Screw

COMP1 COMP2 COMP3 COMP4

COMP5 COMP6 COMP7 COMP8

PIP101 PIP102

PIP103 PIP104

PIP105 PIP106

PIP107 PIP108

COP1

PIP201

PIP202

PIP203

PIP204

PIP205

COP2

NLSensor NLSensor000040 NLSensor NLSensor000040 NLSensor NLSensor000040 NLSensor NLSensor000040 NLSensor NLSensor000040 NLSensor000040

PIP104
NLSensor0in0

NLSensor0in000050 NLSensor0in

PIP105

NLSensor0in1

NLSensor0in000050 NLSensor0in

PIP106
NLSensor0in2

NLSensor0in000050 NLSensor0in

PIP107

NLSensor0in3

NLSensor0in000050 NLSensor0in

PIP108
NLSensor0in4

NLSensor0in000050 NLSensor0in NLSensor0in000050 NLSensor0in000050
PIP202

PIP103

PIP203

PIP204

PIP205

PIP201

PIP101 PIP102

Project:

2021_Sensor_In terface

File:

Dat e:

Dra w ing nu m ber: 2

11 /19 /2020

\ \ d.et hz.ch \ groups \ mavt \ sw issloop \ Sw issloop_21 \ PCB \ 2021_Sensor_In terface \ 2021_Sensor_In terface \ STM32L552CE.SchDoc

11:0 6:01 A M

Form at:

A4 Q

1Rev:

Dra w n by:

Laboratory: Sw issloop

Page of2 7

Sheet:

Luca Rufer

STM32L552CE.SchDoc

1 2 3 4

1 2 3 4

A

B

C

D

A

B

C

D

PA 010

PA111

PA212

PA313

PA414

PA515

PA616

PA717

PA829

PA930

PA1031

PA1132

PA1233

PA13(JT MS/SW DIO)34

PA14(JTCK/SWCLK)37

PA15(JTDI)38

PB018

PB119

PB220

PB3(JTDO / TRACESW O)39

PB4(NJTRST)40

PB541

PB642

PB743

PB845

PB946

PB1021

PB1122

PB1225

PB1326

PB1427

PB1528

PC13 2

PC14-OSC32_IN(PC14) 3

PC15-OSC32_O UT(PC15) 4

PH 0-OSC_IN(PH 0) 5

PH1-OSC_O UT(PH1) 6

PH3-BOOT 0 44

NRST 7

U1A

STM32L552CET6

JTCK/SWCLK
JTMS/SWDIO

JTDO/TRACESWO
JTDI

NJTRST

JTAG/SWJTAG /SW

C5
10

0
nF

 1
6V

 1
0%

GND

NRST

R3

49K9 0.1W 1%
GND

1 2

C3

6.8pF 5% 50V C0G

1 2
C4

6.8pF 5% 50V C0G

GND

1
2

Y2NX3225GD-8MHZ-STD-CRA-3

1
2

Y1NX2012SA-32.768KHZ

1 2

C1

5.6pF 5% 50V C0G

1 2
C2

5.6pF 5% 50V C0G

GND

TX
RXCANCA N

CA N_St andby

Sensor0
Sensor1

Sensor2
Sensor3

Sensor4
Sensor0

Sensor1
Sensor3

Sensor0
Sensor1
Sensor2
Sensor3
Sensor4

Sensor[0 ..4] Sensor[0..4]

Sensor_EN

RX
TXUARTUART

RS485_EN

VDDA_EN
RX
TXLPUARTLPUART

LED1

LED2
LED3

LED2

Green

LED1

Red

LED3

Blue

GND

GND

GND

R4

1K2 0.1W 5%

R6

620R 0.1W 5%

R5

470R 0.1W 5%

LED1

LED2

LED3

NRST

R2

0R 0.1W 5%

R1
0R 0.1W 5%

PIC101 PIC102

COC1

PIC201 PIC202

COC2
PIC301 PIC302

COC3

PIC401 PIC402

COC4

PIC501

PIC502
COC5

PILED101 PILED102

COLED1

PILED201 PILED202

COLED2

PILED301 PILED302

COLED3

PIR101 PIR102

COR1

PIR201 PIR202

COR2

PIR301 PIR302

COR3

PIR401 PIR402

COR4

PIR501 PIR502

COR5

PIR601 PIR602

COR6

PIU102

PIU103

PIU104

PIU105

PIU106

PIU107

PIU1010

PIU1011

PIU1012

PIU1013

PIU1014

PIU1015

PIU1016

PIU1017

PIU1018

PIU1019

PIU1020

PIU1021

PIU1022

PIU1025

PIU1026

PIU1027

PIU1028

PIU1029

PIU1030

PIU1031

PIU1032

PIU1033

PIU1034

PIU1037

PIU1038

PIU1039

PIU1040

PIU1041

PIU1042

PIU1043

PIU1044

PIU1045

PIU1046

COU1A

PIY101

PIY102
COY1

PIY201
PIY202

COY2

PIU1010

PIU1019

NLSensor000040

NLSensor0

POSensor000040

PIU1011

PIU1021

NLSensor000040

NLSensor1

POSensor000040

PIU1016

NLSensor000040

NLSensor2

POSensor000040

PIU1017

PIU1022

NLSensor000040

NLSensor3

POSensor000040

PIU1018

NLSensor000040

NLSensor4

POSensor000040 NLSensor000040 POSensor000040

PIC102

PIC202

PIC302

PIC402

PIC501

PILED101

PILED201

PILED301

PIR301

PIR402

PIU1027

NLLED1

PIR502

PIU1025

NLLED2

PIR602

PIU1026

NLLED3

PIC101

PIU103 PIY102

PIC201

PIR102 PIY101
PIC301

PIU105 PIY202

PIC401

PIR202 PIY201

PILED102 PIR401

PILED202 PIR501

PILED302 PIR601

PIR101 PIU104

PIR201 PIU106

PIR302 PIU1044

PIU102

PIU1012 POLPUART
PIU1013

POLPUART
PIU1014 POVDDA0EN
PIU1015

PIU1020

PIU1028

PIU1029

PIU1030

PIU1031

PIU1032 POCAN0Standby
PIU1033 PORS4850EN
PIU1034

POJTAG0SW
PIU1037

POJTAG0SW PIU1038 POJTAG0SW

PIU1039

POJTAG0SW

PIU1040

POJTAG0SW

PIU1041 POSensor0EN
PIU1042 POUART
PIU1043

POUART
PIU1045

POCAN
PIU1046

POCAN

PIC502

PIU107
NLNRST PONRST

POCAN POCAN0RX POCAN0TX

POCAN0Standby

POJTAG0SW POJTAG0SW0JTCK0SWCLK POJTAG0SW0JTDI POJTAG0SW0JTDO0TRACESWO POJTAG0SW0JTMS0SWDIO POJTAG0SW0NJTRST

POLPUART POLPUART0RX POLPUART0TX

PONRST

PORS4850EN

POSensor0 POSensor1 POSensor2 POSensor3 POSensor4 POSensor000040

POSensor0EN

POUART POUART0RX POUART0TX

POVDDA0EN

Project:

2021_Sensor_In terface

File:

Dat e:

Dra w ing nu m ber: 3

11 /19 /2020

\ \ d.et hz.ch \ groups \ mavt \ sw issloop \ Sw issloop_21 \ PCB \ 2021_Sensor_In terface \ 2021_Sensor_In terface \ JTAGSW .SchDoc

11:0 6:01 A M

Form at:

A4 Q

1Rev:

Dra w n by:

Laboratory: Sw issloop

Page of3 7

Sheet:

Luca Rufer

JTAGSW .SchDoc

1 2 3 4

1 2 3 4

A

B

C

D

A

B

C

D

JTCK/SWCLK
JTMS/SWDIO

JTDO/TRACESWO
JTDI

NJTRST

JTAG/SW

1
2
3
4
5
6
7
8
9

10
11

12
13
14

J1

FTSH-107-01-L-DV-K
STDC14 Connector to STLink

T_JTMS/T_SWDIO

T_JCLK/T_SWCLK

T_JTDO/T_SWO
T_JRCLK/NC
T_JTDI/NC

T_NRST
T_VCP_RX
T_VCP_TX

GND

3V3

JTAG /SW

NRST

RX
TXLPUARTLPUART

R9 22R 0.1W 5%
R10 22R 0.1W 5%
R11 22R 0.1W 5%
R12 22R 0.1W 5%
R13 22R 0.1W 5%

R8
100K 0.1W 5% R7

49
K

9
0.

1W
 1

%

1
2

3
4

SW1

43
43

31
04

58
22

GND

R14 22R 0.1W 5%

PIJ101

PIJ102

PIJ103

PIJ104

PIJ105

PIJ106

PIJ107

PIJ108

PIJ109

PIJ1010

PIJ1011

PIJ1012

PIJ1013

PIJ1014

COJ1 PIR701

PIR702
COR7

PIR801

PIR802
COR8

PIR901 PIR902
COR9

PIR1001 PIR1002
COR10

PIR1101 PIR1102
COR11

PIR1201 PIR1202
COR12

PIR1301 PIR1302
COR13

PIR1401 PIR1402
COR14

PISW101

PISW102

PISW103

PISW104
COSW1

PIJ103

PIR701 PIR802

PIJ105

PIJ107

PIJ1011

PISW102 PISW104

PIJ101

PIJ102

PIR901

POJTAG0SW
PIR1001

POJTAG0SW PIR1101 POJTAG0SW
PIR1201

POJTAG0SW

PIR1301

POJTAG0SW

PIR1401 PONRST

PIJ106

PIR1002

NLT0JCLK0T0SWCLK

PIJ109

PIR1302 NLT0JRCLK0NC
PIJ1010

PIR1102

NLT0JTDI0NC
PIJ108

PIR1202

NLT0JTDO0T0SWO

PIJ104

PIR801
PIR902

NLT0JTMS0T0SWDIO

PIJ1012 PIR1402

PISW101 PISW103
NLT0NRST

PIJ1013

PIR702

NLT0VCP0RX

POLPUART

PIJ1014
NLT0VCP0TX

POLPUART

POJTAG0SW POJTAG0SW0JTCK0SWCLK POJTAG0SW0JTDI POJTAG0SW0JTDO0TRACESWO POJTAG0SW0JTMS0SWDIO POJTAG0SW0NJTRST

POLPUART POLPUART0RX POLPUART0TX

PONRST

Project:

2021_Sensor_In terface

File:

Dat e:

Dra w ing nu m ber: 4

11 /19 /2020

\ \ d.et hz.ch \ groups \ mavt \ sw issloop \ Sw issloop_21 \ PCB \ 2021_Sensor_In terface \ 2021_Sensor_In terface \ Po w er.SchDoc

11:0 6:01 A M

Form at:

A4 Q

1Rev:

Dra w n by:

Laboratory: Sw issloop

Page of4 7

Sheet:

Luca Rufer

Po w er.SchDoc

1 2 3 4

1 2 3 4

A

B

C

D

A

B

C

D

VSS23

VSS35

VSS47

VSSA / VREF-8 VBAT 1

VDD 24

VDD 36

VDD 48

VDDA / VREF+9 2 of 2

U1B

STM32L552CET6

3V3

C10
100 nF 16V 10%

C11 C12 C13
4.7 uF 10V 10%

1
2C7

10
 n

F
16

V
 1

0%

C6

1
uF

 1
6V

 1
0%

2

IN4 VREF 5

EN3 N C 1

GND

U2
LM4128AMF-2.5

VDDA

GND

3V3

C8
100 nF 16V 10%

C9
100 nF 16V 10%

VDDA

GND

2.5 V Serial Voltage Reference

VDDA_EN

3V3 3V3_IN

GND

1
2

D1
3.6V 0.3W

Input Overvoltage and overcurrent protection

V_Sensor_in V_Sensor_out

Sensor_EN

G N D 1

IN2 OUT 3

N C 4VBB5

VBB6

VBB7

VBB8

U3

ISP762T

GND

486-1666-1-ND

F1 1A

PIC601
PIC602

COC6

PIC701
PIC702 COC7

PIC801

PIC802
COC8

PIC901

PIC902
COC9

PIC1001
PIC1002 COC10

PIC1101
PIC1102 COC11

PIC1201
PIC1202 COC12

PIC1301
PIC1302 COC13

PID101
PID102

COD1

PIF101 PIF102

COF1

PIU101

PIU108

PIU109

PIU1023 PIU1024

PIU1035 PIU1036

PIU1047 PIU1048

COU1B

PIU201

PIU202
PIU203

PIU204 PIU205

COU2

PIU301

PIU302 PIU303

PIU304 PIU305

PIU306

PIU307

PIU308

COU3

PIC802

PIC1002 PIC1102 PIC1202 PIC1302

PID101
PIF101

PIU101

PIU1024

PIU1036

PIU1048

PIU204

PIF102

PIC601 PIC702

PIC801 PIC901

PIC1001 PIC1101 PIC1201 PIC1301

PID102

PIU108

PIU1023

PIU1035

PIU1047 PIU202

PIU301

PIU201 PIU203 POVDDA0EN

PIU302 POSensor0EN

PIU304 PIU305

PIU306

PIU307

PIU308

PIU303

PIC602 PIC701

PIC902

PIU109

PIU205

POSensor0EN

POVDDA0EN

Project:

2021_Sensor_In terface

File:

Dat e:

Dra w ing nu m ber: 5

11 /19 /2020

\ \ d.et hz.ch \ groups \ mavt \ sw issloop \ Sw issloop_21 \ PCB \ 2021_Sensor_In terface \ 2021_Sensor_In terface \ CA N .SchDoc

11:0 6:01 A M

Form at:

A4 Q

1Rev:

Dra w n by:

Laboratory: Sw issloop

Page of5 7

Sheet:

Luca Rufer

CA N .SchDoc

1 2 3 4

1 2 3 4

A

B

C

D

A

B

C

D

C
14

10
0

nF
 1

6V
 1

0%
R

19

49
K

9
0.

1W
 1

%

R17 22R 0.1W 5%

R16 22R 0.1W 5%

R15
120R 0.1W 5%

R
18

49
K

9
0.

1W
 1

%

3V3

GND GND

TX

RXCANCA N

11

22 3 3
D2

ESDCAN05-2BWY

GND

CA N_H

CA N_L

CA N_St andby

CAN_P

CAN_N

TXD1

G N D 2

VCC3

RXD4

SHD N5

CA NL 6

CA N H 7

STB8

U4

TCAN334GDCNR

PIC1401
PIC1402

COC14

PID201

PID202

PID203

COD2

PIR1501

PIR1502
COR15

PIR1601 PIR1602
COR16

PIR1701 PIR1702
COR17

PIR1801

PIR1802 COR18

PIR1901

PIR1902 COR19

PIU401

PIU402

PIU403

PIU404

PIU405

PIU406

PIU407

PIU408

COU4

PIC1402

PIU403

PID202

PIR1501
PIU406

NLCAN0N POCAN0L

PID201

PIR1502
PIU407

NLCAN0P POCAN0H

PIC1401

PID203

PIR1802 PIR1902

PIU402

PIR1601

POCAN
PIR1602 PIU404

PIR1701

POCAN
PIR1702 PIU401

PIR1801

PIU405

PIR1901

PIU408 POCAN0Standby

POCAN POCAN0RX POCAN0TX

POCAN0H

POCAN0L

POCAN0Standby

Project:

2021_Sensor_In terface

File:

Dat e:

Dra w ing nu m ber: 6

11 /19 /2020

\ \ d.et hz.ch \ groups \ mavt \ sw issloop \ Sw issloop_21 \ PCB \ 2021_Sensor_In terface \ 2021_Sensor_In terface \ Fil t er.SchDoc

11:0 6:01 A M

Form at:

A4 Q

1Rev:

Dra w n by:

Laboratory: Sw issloop

Page of6 7

Sheet:

Luca Rufer

Fil t er.SchDoc

1 2 3 4

1 2 3 4

A

B

C

D

A

B

C

D

IN OUTRS 22R 0.1W 5%

RU
49K9 0.1W 1%

RD
120R 0.1W 0.1%

GND

3V3

1
2

DP
3.6V 0.3W

GND

CF

4.7 uF 10V 10%

GND

Corner frequency of the filter:
f_g = 1/(2*pi*R_S*C_F)*(1+R_S/R_D)

Example values for filter configurations:

RS RU RD CF Result

Current input 22 Ohm NC 120 Ohm 4.7 uF Out Voltage = 0.48 - 2.4 V
(4 - 20 mA) f_g = 1.8 kHz

Voltage input 500 Ohm NC 500 Ohm 636 nF Sensor input current = 0 - 5 mA
(0 - 5 V) f_g = 1 kHz

Thermistor 10 Ohm NC 1 kOhm 16 uF max VADD current = 2.5 mA on short circuit
R0 = 10kOhm f_g = 1 kHz

SPI MISO 22 Ohm 10 kOhm NC NC Pullup and reduction of signal ringing with RS
f_g < 16 MHz due to board and Diode capacitance

RS485 NC NC NC NC Filter not used, connect R27-R30 instead
Any of Tx/Rx +/-

No Filter 0 Ohm (Jumper) NC NC NC Filter bypassed

PICF01
PICF02 COCF PIDP01

PIDP02
CODP

PIRD01

PIRD02
CORD

PIRS01 PIRS02
CORS

PIRU01

PIRU02

CORU
PIRU01

PICF01 PIDP02 PIRD01
PICF02 PIDP01 PIRD02

PIRS02

PIRU02
POOUT PIRS01 POIN POIN POOUT

Project:

2021_Sensor_In terface

File:

Dat e:

Dra w ing nu m ber: 7

11 /19 /2020

\ \ d.et hz.ch \ groups \ mavt \ sw issloop \ Sw issloop_21 \ PCB \ 2021_Sensor_In terface \ 2021_Sensor_In terface \ RS485.SchDoc

11:0 6:01 A M

Form at:

A4 Q

1Rev:

Dra w n by:

Laboratory: Sw issloop

Page of7 7

Sheet:

Luca Rufer

RS485.SchDoc

1 2 3 4

1 2 3 4

A

B

C

D

A

B

C

D

R1

RE2

DE3

D4

G N D5 Y/ Tx- 6Z / Tx+ 7B /Rx+ 8A /Rx- 9VCC 10
U5

SN65HVD70

GND

C15

100 nF 16V 10%

3V3

GND

R27 10R 5% Pulse Proof

R28 10R 5% Pulse Proof
R29 10R 5% Pulse Proof

R30 10R 5% Pulse Proof

RS485_Rx_N

RS485_Rx_P
RS485_Tx_P

RS485_Tx_N RS485_Tx-

RS485_Tx+
RS485_Rx+

RS485_Rx-R23
0R 0.1W 5%

R25
120R 0.1W 5%

R26
120R 0.1W 5%

R24
49K9 0.1W 1%

DE

R20 22R 0.1W 5%

R22 22R 0.1W 5%

R21 22R 0.1W 5%

RX
TX

UARTUART

Not used:
DE: L/Open R\E\: H/Open
No components shown in this sheet fitted

Full Duplex
DE: DE-Pin R\E\: L
Fit R24, don't fit R23

Half Duplex:
DE: DE-Pin R\E\: DE-Pin
Fit R23, don't fit R24 Termination resistors R25

and R26 only fitted when
necessary

For <0.4Mbps:
SN65HVD70
For <20Mbps:
SN65HVD73
For <50Mbps:
SH65HVD76

R20, R21 and R22 only
necessary for signal rates in the
Mbps range to limit ringing.
Resistor value dependant on
the signal speed.
For low signal speeds, 0 Ohm
jumpers can be used.

PIC1501
PIC1502 COC15

PIR2001 PIR2002
COR20

PIR2101 PIR2102
COR21

PIR2201 PIR2202
COR22

PIR2301

PIR2302
COR23

PIR2401

PIR2402
COR24

PIR2501

PIR2502
COR25

PIR2601

PIR2602
COR26

PIR2701 PIR2702
COR27

PIR2801 PIR2802
COR28
PIR2901 PIR2902

COR29

PIR3001 PIR3002
COR30

PIU501

PIU502

PIU503

PIU504

PIU505 PIU506

PIU507

PIU508

PIU509

PIU5010

COU5

PIC1502

PIU5010

PIC1501

PIR2402

PIU505

PIR2001

POUART
PIR2002 PIU501

PIR2101

POUART
PIR2102 PIU504

PIR2201 PODE PIR2202

PIR2301

PIU503

PIR2302 PIR2401

PIU502

PIR2702 PORS4850Rx0

PIR2802 PORS4850Rx0
PIR2902 PORS4850Tx0

PIR3002 PORS4850Tx0

PIR2502
PIR2701

PIU509

NLRS4850Rx0N

PIR2501
PIR2801 PIU508

NLRS4850Rx0P

PIR2601
PIR3001

PIU506

NLRS4850Tx0N

PIR2602
PIR2901 PIU507

NLRS4850Tx0P

PODE

PORS4850Rx0
PORS4850Tx0

POUART POUART0RX POUART0TX

A. PCB Schematics

36

Bibliography

[1] E. Musk, “Hyperloop alpha,” 2013, [Online; accessed 21-December-2020]. [Online].
Available: https://www.tesla.com/sites/default/files/blog_images/hyperloop-alpha.
pdf

[2] “Swissloop,” 2020, [Online; accessed 21-December-2020]. [Online]. Available:
https://www.swissloop.ch

[3] “European hyperloop week,” 2020, [Online; accessed 21-December-2020]. [Online].
Available: https://hyperloopweek.com

[4] “Road vehicles — Controller Area Network (CAN) — Part 1: Data link layer and
physical signalling,” International Organization for Standardization, Geneva, CH,
Tech. Rep. ISO 11898-1:2015(E), 2015.

[5] M. Akpinar, K. W. Schmidt, and E. G. Schmidt, “Improved clock synchronization
algorithms for the Controller Area Network (CAN),” 2019.

[6] D. Lee and J. Allan, “Fault-Tolerant Clock Synchronisation with Microsecond- Pre-
cision for CAN Networked Systems,” 2003.

[7] STM, RM0438: STM32L552xx and STM32L562xx advanced Arm®-based 32-bit
MCUs, STMicroelectronics, May 2020.

[8] ——, STM32L5 Nucleo-144 board (MB1361), STMicroelectronics, June 2020.

[9] ——, STLINK-V3SET debugger/programmer for STM8 and STM32 (UM2448),
STMicroelectronics, June 2020.

37

https://www.tesla.com/sites/default/files/blog_images/hyperloop-alpha.pdf
https://www.tesla.com/sites/default/files/blog_images/hyperloop-alpha.pdf
https://www.swissloop.ch
https://hyperloopweek.com

	List of Acronyms
	Introduction
	Hyperloop
	Swissloop

	Background
	Sensor Network Architecture of previous Swissloop Pods

	Network Architecture
	Network Topology
	Communication Protocol
	Software Architecture
	Sensor Support

	Design Implementation and Results
	Software implementation
	Network Layer
	Session Layer
	User Interface
	Device Layer
	Sensor Layer

	Hardware Implementation
	PCB Components
	Sensor Compatibility

	Performance
	Message duration and bus load
	Latency
	Time Synchronization

	Conclusion and Future Work
	Conclusion
	Future Work
	Implementation on Swissloop 2021 Pod

	PCB Schematics

