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Abstract

In this project, a sensor network architecture based on a linear bus topology using the
Controller Area Network (CAN) protocol was developed to replace the current sensor
topology that Swissloop used in past years. Swissloop builds Hyperloop vehicles based
on Linear Induction Motors (LIMs), which require a wide range of sensors to control
the vehicle end ensure safety. The sensor network is based on a layered approach and
provides features like time synchronization of nodes, address management and sending
commands. The system is highly configurable to allow for many different use-cases.

A special adapter Printed Circuit Board (PCB) was developed to connect sensors to the
network. The adapter supports a wide range of digital interfaces and can also collect
various analog signals.
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Chapter 1
Introduction

1.1. Hyperloop

In 2013, SpaceX and Tesla CEO Elon Musk published a white-paper called Hyperloop
Alpha [1], where they describe the Hyperloop concept as a "fifth mode [of transportation]
after planes, trains, cars and boats" to transport passengers and goods at velocities of
up to 1220 km/h. The main idea behind the Hyperloop concept is the use of pressurized
vehicles, called pods, in a near vacuum tube. The pods use contact-less propulsion and
levitation to keep friction as low as possible.
To further promote his idea, Musk organized an annual Hyperloop Competition that first
took place in 2017 and last took place in 2019. There, student teams from around the
world competed against each other to build a self-propelled prototype that reaches the
highest possible velocity. For the competition, SpaceX built a 1.2 km long near-vacuum
test track in Hawthorne, California.

1.2. Swissloop

Swissloop [2] is a student organization with students from ETH Zurich and other Swiss
universities that participates in the Hyperloop Competition since the first competition.
In the 2019 competition, the team reached the second place with a maximum speed of
252 km/h using their custom build linear induction motor and inverter. In 2020, the
team built another Hyperloop Prototype called Simona de Silvestro, where the team
used the knowledge gained in the previous year to improve the linear induction motor
and inverter. However, due to the COVID-19 pandemic it was not possible for the team
to participate in any competition.
Swissloop planes to participate in the European Hyperloop Week [3] in July 2021, where
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1. Introduction

simultaneous levitation and propulsion using a linear induction motor will be demon-
strated with a new Hyperloop prototype.
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Chapter 2
Background

This chapter aims to provide some more information on why this project was realized by
covering previous Swissloop pods and their sensor network architecture in more detail.
It is especially focused on the latest functional pod built by Swissloop in 2019 to 2020,
called Simona de Silvestro. For this Hyperloop prototype, at first a 2.2m long pod was
planned, but due to the cancellation of the SpaceX Hyperloop Competition, a smaller
1.3m variant was realized. The realized variant contains all the Systems from the initial
design, but just in a smaller size or number. As the following section contains a mix of
information from both designs, the initially designed pod and the realized smaller one
will further be referenced as Competition Pod and Prototype Pod, respectively.

2.1. Sensor Network Architecture of previous Swissloop
Pods

In the four Hyperloop prototypes built by Swissloop from 2016 to 2020 a Star Network
topology was used, where all sensors of the pod are connected directly to a central star
point called the Vehicle Control Unit (VCU). The 2020 Competition Pod was planned
to have 26 sensors for vehicle control, excluding the sensors for the battery management
system and the inverter. These sensors are distributed all over the pod as shown in
Figure 2.1. The Prototype Pod with the reduced number of systems only has 17 vehicle
sensors. The sensors for the Competition Pod have different signal types: 2 NPN1 sensors,
10 thermistors, 10 sensors with current output, 3 sensors with RS485 communication
and an encoder. The thermisor values are converted on an external Analog to Digital
Converter (ADC) and sent to the VCU using the Inter-Integrated Circuit (I2C) protocol,

1An NPN or PNP sensor basically acts as a switch

3



2. Background

Figure 2.1.: Sensor locations of the Swissloop 2020 Competition Pod

while the signals from the other sensors are combined into a total of 11 cables connected
directly to the VCU. This results in 19m of sensor cable in the 2.2m long Competition
Pod and almost 10m of sensor cable used in the 1.3m long Prototype Pod. The cables
and connectors weigh about 3 kg in the Competition Pod and 1.5 kg in the Prototype Pod.
The cables and connectors are therefore a major contributor to the total weight and cost
of the prototype. Additionally, the PCB for the VCU shown in Figure 2.2 and 2.3 is
quiet large, as the connectors require a lot of space.
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2. Background

Figure 2.2.: VCU PCB of the 2020 Swissloop Pod, Top View.

Figure 2.3.: VCU PCB of the 2020 Swissloop Pod, Bottom View.

5



Chapter 3
Network Architecture

The goal of this project is do design and test both software and hardware for a sensor
network that improves on the flaws of the sensor architecture that previous Swissloop
pods used. In this project, an architecture is developed that is configurable and compat-
ible with a large number of sensors and cover all the needs of a Hyperloop pod sensor
network. The resulting software and hardware will be integrated into the new Pod that
Swissloop is currently developing.

3.1. Network Topology

The foundation of a network architecture is its topology. As mentioned in Chapter 2.1,
previous Hyperloop pods built by Swissloop based their sensor networks on a star topol-
ogy (Figure 3.1). While this topology is well suited and easy to implement for a small
amount of sensors, it is not scalable for larger amounts of sensors and inefficient regarding
size and weight, especially if multiple sensors are located close to each other, but every
sensor has a separate connection to the VCU.
As Hyperloop pods are relatively long and narrow, a linear topology can reduce the
amount of cable used to a single one from the back to the front with stubs to the sensor
locations and therefore reduce weight and cost. Therefore, a linear bus topology was
chosen for this project, as shown in Figure 3.2. A linear bus topology also has the advan-
tage that sensors can be added to or removed from the system at any point, making the
design process much easier. In order to be able to connect a variable amount of sensors
with different outputs to a common bus, a interface to the bus is needed. This interface
is responsible for reading data from the sensor and sending it to the communication bus
in an appropriate form.

6



3. Network Architecture

Figure 3.1.: Star Network Topology

Figure 3.2.: Bus Network Topology

3.2. Communication Protocol

The CAN Protocol was chosen as the communication protocol, as it is a multi-master
priority-based bus protocol with non-destructive content-based arbitration [4]. It was
primarily developed for automotive applications. The CAN protocol has many useful
properties, as listed below:

• Multi-Master: The network does not require a master to decide which node is
allowed to send a message frame. This allows a high degree of freedom to be given
to the sensor nodes and allows them to send their data autonomously without the
need for the network master to poll the sensor nodes for new data. Furthermore,
this also reduces the latency of the data sent by the sensor nodes.

• Medium Access Control (MAC) Realized in Hardware: Bus access control does not
have to be implemented in software, which makes the implementation much easier
and more resistant to errors.

• Content-based Arbitration: CAN frames have an identifier at the beginning of each
frame, which is used to determine the priority of the frame. If multiple nodes on
the bus try to send a frame simultaneously, the node sending the frame with lower
priority stops sending and the message with the higher priority can continue to
send its frame without restarting the transmission.

• Integrated Cyclic Redundancy Check (CRC): The integrated CRC makes the pro-
tocol more resistant to single bit flip errors or error bursts cased by e.g. Electro-
magnetic Interference (EMI).

7



3. Network Architecture

• Integrated Error Handling: a large variety of errors within a transmission are de-
tected by hardware and frames can be automatically re-transmitted in case of an
error.

The new version of CAN, Controller Area Network with Flexible Data rate (CAN FD),
allows to change the bitrate in a certain part of the message called data phase, which
contains the data and the CRC. Additionally, a message frame can contain up to 64
Byte instead of up to 8 Bytes per frame, and the CRC was improved. Many modern
Microcontroller Units (MCUs) already have an integrated CAN FD peripheral.

3.3. Software Architecture

To distinguish the devices connected to the sensor bus, roles are used. Every node on
the bus can have any combination of following roles:

• Network Master: The network master is responsible for the address assignment and
configuration of the other nodes on the bus. There is exactly one network master
per sensor bus.

• Sensor Node: A sensor node is a node that collects data from a sensor connected
to it and sends this data to the bus. A network normally has multiple sensors. The
number of sensor is limited to 62 for reasons explained further below.

• Listener: A listener collects the data sent by the sensor nodes. It does not send
any data itself. A network can have multiple listeners.

The role of the listener allows other systems (like an inverter) of a pod to be connected
directly to the sensor bus. These systems can access the data directly and do not have
to wait for the data to be relayed by the network master, which massively reduces the la-
tency of the data. For most use-cases, the VCU acts as the network master and a listener
in order to control the network and collect the data from the sensor nodes. Figure 3.3
shows an example of a sensor network with a VCU on the right acting as the network
master (green) and listener (gray), multiple listeners (gray) and sensors (blue) with a
bus adapter (yellow). Some sensor nodes also have the listener role to collect data from
other sensor nodes. In such cases, the adapter is indicated as yellow and gray. This can
be useful if a sensor produces data depending on other sensors.

A CAN frame can have either an 11-bit normal or a 29-bit extended identifier. The sensor
network only uses the shorter 11-bit identifier as it suffices to implement the necessary
functionalities. The division of the 11-bit identifier is shown in Figure 3.4. The lower
6 bits are used to determine the address of the device and the upper 5 bits are used to
identify the type of the message.
Only sensor nodes have an address whereas the network master and the listeners have
no specific addresses. A listener does not have an address because it cannot send any

8



3. Network Architecture

Figure 3.3.: Example topology of the sensor network with roles

ID10 ID9 ID8 ID7 ID6 ID5 ID4 ID3 ID2 ID1 ID0SOF RRS

5 Bit Message Type 6 Bit Node Address

11 Bit Message Identifier

Figure 3.4.: Division of the CAN Message Identifier Field

data on the bus. If a master wants to communicate with a specific sensor node, it sends
a message with the address of the sensor node. If the master wants to send a message to
all nodes, it sends a message using the broadcast address 0x00. Another special address
is the unassigned address 0x3F, which the sensors nodes use that have not been assigned
an address yet. The process of address assignment is elaborated in Section 4.1.1 under
Address Management.
The 5 bits used for the type of the message allow for 32 different message types. An
overview of the existing message types is shown in Figure 3.5. The order of the message
type ensures that more important message types have a lower type number and therefore
a higher priority. This guarantees that important messages cannot be blocked or delayed
by less important messages. The message type also dominates the address in regard to
priority, as the type occupies the higher 5 bits of the CAN identifier.

3.4. Sensor Support

The goal of the sensor network is to support a large variety of sensor signals and at least
the signal types of the sensors used in previous Swissloop pods described in Section 2.1.
The signal types shown in Figure 3.6 cover common sensor outputs and these will be
supported by the network adapter.
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3. Network Architecture

Sensor Signal

Analog

Resistance Current Voltage Encoder /
Counter

GPIO/
Interrupt PWM

Other

Digital

SPI I2CRS485UART/USART

Figure 3.6.: Sensor signal types
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Chapter 4
Design Implementation and Results

This chapter covers the actual implementation of the sensor network. It covers both the
implementation in software and the hardware implementation of the adapter PCB. At
the end of this chapter, a few performance metrics resulting from the implementation are
shown.

4.1. Software implementation

The software stack is divided into multiple layers with distinct functionality. The software
stack differs depending on the role of the network node. The software stack for both the
network master and the listeners is shown in Figure 4.1 and the software stack for the
sensor node is shown in Figure 4.2. The lowest layer, the physical layer, is largely
defined by the CAN standard [4]. The layer above the physical layer, the data link layer,
is completely defined by the CAN standard and implemented in hardware in a CAN
controller. The lowest layer implemented in software a Hardware Abstraction Layer
(HAL). As described in Subsection 4.2.1, a STMicroelectronics (STM) MCU was used
and therefore the HAL provided by the chip manufacturer was used for this layer.

4.1.1. Network Layer

The network layer is built on top of the HAL. Its main task is to pack and unpack
the CAN messages and configuring the CAN transmissions. Additionally, it provides a
time base for all layers above and it is responsible for time synchronization and address
management, which will be described in the following sections.

12



4. Design Implementation and Results

User Software

FD CAN

CAN FD Controller

CAN FD Transceiver
Sensor Interface Hardware

STM HAL

Sensor Interface Software

Physical Layer

Data Link Layer

Network Layer

FDCAN Hardware
Abstraction Layer

Session Layer

Interface Layer

User Layer

Hardware
Software

Time and Sync Address
Management

TIM Hardware
Abstraction Layer

Memory Command

Figure 4.1.: Software stack for network master and listeners

Time and synchronization

For the network layer and all layers above a local system time is established. System
time is a 64 Bit value, which holds the time in microseconds since system startup. The
lower 16 Bits of the timestamp taken from a hardware timer, and the upper 48 bits are
taken from an overflow counter of said counter.

The sensor nodes have a high degree of autonomy and can perform actions like sampling
the sensor regularly by themselves. This, however, makes the sensor nodes susceptible to
time drift, caused by imperfections of oscillators. Multiple sensor nodes can only perform
action or sample the sensors simultaneously if they have the same system time, which
requires time synchronization. Additionally, some sensors like event triggered sensors
require the global system time as part of the data they produce, which also requires a
network-wide time synchronization.

While many synchronization algorithms like [5] and [6] suggest algorithms that correct the
time drift by jumping in time, this is not really a viable option for this system, as the sys-
tem uses the capture-compare channels of the system time timer. Instead, an algorithm
that adjusts the prescaler of the system timer was implemented to speed up or slow down
time for nodes that are behind or ahead of the master’s system time. The adjustment
of the prescaler changes the slope s of the difference of local times ∆t = tslave − tmaster,

13



4. Design Implementation and Results

User Software

FD CAN

CAN FD Controller

CAN FD Transceiver
Sensor Interface Hardware

STM HAL

Sensor Interface Software

Physical Layer

Data Link Layer

Network Layer
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Abstraction Layer

Session Layer

Device Layer

Sensor Layer

Hardware
Software

Time and Sync Address
Management

TIM Hardware
Abstraction Layer

Memory Command

Other Hardware
Abstraction Layer

Sensor

Figure 4.2.: Software stack for sensor nodes

as seen in Figure 4.3. The slope sj is given by Equation 4.1, where d is the time drift,
P0 is the default prescaler value and Pj is the prescaler value during time sync period j.
The time difference ∆tj+1(t) can be calculated using Equation 4.2, which can be derived
from Figure 4.3.

sj = d+
P0 − Pj
P0

(4.1)

∆tj+1(t) = ∆tsync,j + sj+1 · (t− (tj + tsync)) for tj + tsync ≤ t ≤ tj+1 + tsync (4.2)

The network master also acts as the time master, which periodically sends a reference
message. Using the message timestamp functionality of the CAN peripheral of the MCU
[7, p. 1900], the send timestamp of the reference message is stored by the time master
as tj . The time slaves store the receive timestamp of reference message using the same
mechanism as tj,α. As soon as the time master finished sending the reference message,
it sends a sync message containing the timestamp tj of the last sent reference message.
At local slave time tj,β right after the slave received the sync message, the slave executes
Algorithm 1 to update the timer prescaler. The algorithm aims to keep the Root Mean
Square (RMS) time difference (see Equation 4.3) as low as possible. The RMS time
difference is minimal for the Pj+1 derived in Equation 4.4. As the exact value of the
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Figure 4.3.: Time drift and drift compensation

oscillator drift d is not known, it has to be estimated using Equation 4.5, which can be
derived from Figure 4.3.

E2
rms,j+1 =

1

T

∫ tj+1+tsync

tj+tsync

(∆tj+1(t))2dt = ∆t2sync,j+∆tproc,j ·sj+1 ·T +
1

3
·s2
j+1 ·T 2 (4.3)

dE2
rms,j+1

dPj+1

!
= 0⇔ Pj+1 =

3

2
· P0 ·

∆tsync,j
T

+ P0 · (1 + d) (4.4)

P0 · (1 + d) =
(∆tsync,j −∆tsync,j−1)

T
· P0 + Pj (4.5)

Address Management

As the address of a node reflects its priority to send messages on the bus, the addresses
have to be manageable and configurable by the network master. Therefore, an address
assignment and management process was implemented. Initially, a process similar to
the Dynamic Host Configuration Protocol (DHCP) was planned. However, the process
of nodes actively requesting addresses was deemed as unnecessarily complicated, as this
would require the implementation of an additional MAC: All sensor nodes would send
their request simultaneously upon startup, resulting on collisions on the bus because all
nodes send with the same CAN identifier. Because in a normal application of this sensor
network all connected sensors are known in advance anyway, it was easier to implement
a process where nodes are assigned addresses by the network master without sending a
request first.
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Algorithm 1: Time synchronization of time slaves
input: Timestamp tj when the reference message was sent, in master time
input: Timestamp tj,α when the reference message was received, in slave time
input: Timestamp tj,β when the sync message was received, in slave time

1 ∆tref,j ← tj,α − tj ;
/* if the time difference is too large, jump in time */

2 if |∆tref,j | > ∆tref,max then
3 current_time← tj + tj,β − tj,α;
4 Pj+1 ← P0; // Reset prescaler to default value
5 ∆tsync,j ← 0; // No time drift after time jump
6 Pd,est ← P0; // Reset to default value (d=0)
7 else
8 ∆tsync,j ←

tj,β−tj−1,β

tj,α−tj−1,β
· (∆tref,j −∆tsync,j−1) + ∆tsync,j−1;

9 Pd,est,new ←
(∆tsync,j−∆tsync,j−1)

T · P0 + Pj ; // Eq. 4.5
10 Pd,est ← α · Pd,est + (1− α) · Pd,est,new; // Filter Pd,est

11 Pj+1 ← 3
2 · P0 · ∆tsync,j

T + Pd,est; // Eq. 4.4
12 end
13 UpdatePrescaler(Pj+1)

At the beginning of this process, all sensor nodes use the unassigned bus address 0x3F.
Every sensor node has a unique 32-bit identifier, which is used to differentiate between
the nodes. Using a predefined list of address - node ID pairs, the network master assigns
the addresses one by one using a dedicated address assignment message. The message
contains the node ID and the CAN address assigned to it. If a sensor nodes gets an
address assignment message containing its node it, it buffers the CAN address. However,
the sensor node still continues to communicate with its old address. When the network
master finished sending all addresses, it sends an init message with a special flag set
indicating the nodes to update their network layer with the newly assigned address. The
state diagrams for the network master and sensor node can be seen in Figure 4.4 and
Figure 4.5, respectively.

4.1.2. Session Layer

The main task of the session layer is handling communication sequences that consist of
multiple messages. These primarily are the write, read and command request. They will
be further explained in the subsections below. All three requests consist of a request
by the master, followed by an acknowledgement from the sensor node that indicates if
the request is granted. If the request was granted, the sensor node also sends a callback
message after the request was performed, e.g. the data was written/read for a write/read
request or the command has finished execution in case of a command request.
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Figure 4.4.: Address Management: State machine for network master

Memory

The sensor interface memory supports up to 256 memory sections with up to 256 32-bit
words each. The sensor interface has four memory sections implemented:

• Error Code Section: This section holds which error flags are set for the whole sensor
interface software. It also holds masks to filter which error flags will be reported to
the other nodes on the network if they change. Merging all these error codes into
a single structure allows for easy read and clear access by the master.

• Hardware Section: This section holds the hardware definitions for the sensor node
interface. It depends on the connected device and is used to indicate the presence
or absence of certain components or the values of components like resistors or
capacitors that can be varied.

• General SI Section: This section holds the general sensor interface configuration,
like which sensor is connected and at which period it shall be sampled.

• Sensor Specific Section: This section can be used to pass configurations or infor-
mation directly to the selected sensor.

While all of the above sections exist for the sensor node role, only the error code section
exists for the network master and listener. The network master can read or write a 32-bit
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Figure 4.5.: Address Management: State machine for sensor node

word from or to the sensor node memory by using a read or write request. The sensor
node can write-protect each 32-bit to prevent the master from overwriting data.

Command

The network master can let the sensor nodes execute commands using a command re-
quest. Commands can be directed either to the sensor interface software in general, to
the interface device or directly to the sensor layer. Commands for the latter two depend
on the device and the sensor, respectively. A variable amount of data between 0 and 60
Bytes can be sent with the command to give additional information for the command
which has to be executed. Examples for commands are Start Data Collection, which is
addressed to the interface software in general, or Enable Sensor Power, on which a device
supporting this command would enable power to the sensor.

4.1.3. User Interface

The user interface is supposed to make the interaction with the sensor interface easier.
It is especially focused on network startup, configuring sensors as well as starting and
stopping sensor data collection. However, it does not offer all the functionality that the
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session layer offers, which means that the user has to interface directly with the session
layer for more in-depth usage of the sensor interface software.

4.1.4. Device Layer

The device layer abstracts the sensor interface hardware. It provides the hardware ini-
tialization functions for the peripherals, configures and redirects interrupts where needed
and abstracts the hardware to make the programming of the sensors easier.

4.1.5. Sensor Layer

Programming the actual interface with the sensor happens in the sensor layer. For
every sensor that can be connected, a separate header-source pair is written that has to
implement at least the functions listed below:

• init : In the init function, the communication with the sensor is initialized. This
varies from sensor to sensor and can be actions like initializing a communication
peripheral or the ADC.

• update: This function is called regularly upon which regular task like state or health
checks can be executed.

• get data: When this function is called, a data item will be collected from the sensor.
This function is called either periodically by the device if a sampling period is set
and/or upon a command from the master. When the data item is collected from
the sensor, it is passed to a predefined send data function implemented by the
device, which sends the collected data to the network bus.

• deinit : A function used to de-initialize the sensor, e.g. shut down the sensor, release
all occupied peripherals and memory.

• execute command : Execute a command requested by the master. What the com-
mand does largely depends on the sensor. The command is further explained in
Section 4.1.2.

4.2. Hardware Implementation

As mentioned at the beginning of this chapter, the sensors have to be connected to the
network using some kind of adapter. This adapter was realized as a custom made PCB.
For any other devices on the bus that are not sensor nodes, no specific hardware was
realized. The only hardware requirement for these is the availability of a CAN FD inter-
face. The main design parameters of the adapter PCB were to keep it as small and light
as possible, while still being compatible with a large range of sensors. The PCB is shown
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in Figure 4.6 and 4.7 with its key functional blocks and components encircled. The size
of the PCB is 45mm by 17mm, the schematics of the PCB can be found in the appendix.

Figure 4.6.: Top view of the Sensor Interface PCB with key components

4.2.1. PCB Components

In the center of the top side, the MCU (Label 1) is located. The decision to use a MCU
from STM was made early on in the project, as they produce a large variety of MCUs
and many of those feature a CAN FD peripheral. As the MCU on the sensor interface
PCB does not have to be a high performance MCU, the selection was focused on the
STM32L5 product line, a low-power MCUs line with an integrated CAN FD periperal.
Finally the STM32L552 MCU was chosen due to the availability of a development board
[8].
The PCB has three connectors: The first one is the bus connector (Label 2), which has
the CAN-High and CAN-Low signal lines (inscription H and L, respectively), a ground
connection (V-), a 3.3V supply connection to power the Integrated Circuits (ICs) on the
PCB and a sensor voltage connection (V+). As the sensors on the bus might require
different supply voltage levels and therefore multiple different supply voltage levels are
needed on the bus, no fixed connector was used for the bus connector. For the con-
nections, the wires of the bus cables can be soldered directly into the pad holes of the
respective connector. To provide more stability, the cable can be fixed using a 3D printed
part that is screwed to the PCB with the M2 screw holes in the corners. The pads of
the connector have a 100 mil pitch, allowing standard pin header to be directly soldered
onto the PCB for testing and debugging purposes.
The second connector is the sensor connector (Label 3). To allow many different con-
figurations of sensors to be connected, there is no fixed connector used and the same

20



4. Design Implementation and Results

considerations as for the bus connector apply. The connector has a pad for ground (in-
dicated with -), one for sensor supply (indicated with +) and one for a reference voltage
(indicated with r). For communication with the sensor, five signal pads (indicated with
1 to 5) are used. Each of these five signals is filtered and passed to the MCU. The filters
are discussed further below.
The third and last connector is a 14 pin 50 mil pitch connector used to program and
debug the MCU. The pinout is compatible to the STLink-V3 [9] and supports Joint Test
Action Group (JTAG) and Serial Wire Debug (SWD) interface for programming and
debugging. It also features a virtual COM port that can be used for debugging using
Universal asynchronous receiver-transmitter (UART).
Additional components on the top side worth mentioning are the external oscillators
(Label 5), the CAN transceiver (Label 6) including optional termination resistor, a op-
tional full-duplex RS485 transceiver (Label 7) and three Light-Emitting Diodes (LEDs)
(Label 8) that can be programmed in the sensor layer.

Figure 4.7.: Bottom view of the Sensor Interface PCB with key components

The bottom side of the adapter PCB has a precision 2.5V voltage reference IC (Label 9)
for the internal ADC of the MCU and can be used by sensors like thermistors as an
accurate voltage reference.
The largest IC on the bottom side is a high side power switch (Label 10) that can be
used to enable and disable the sensor supply power, which makes it possible to shut
down the sensor by software when it is not needed. This also allows to reduce the power
consumption of the system.
The PCB also features a reset button (Label 11) to reset the MCU. It is only intended to
be used during debugging and is removed when the PCB is integrated into the vehicle.

The signal filters (Label 12) are used to filter the signals from the sensors and provide
pull-up or pull-down on signal lines if necessary. Which components are present and
what value these resistors and capacitors have depends on the signal type and sensor.
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Figure 4.8.: Sensor signal filter circuit

Table 4.1.: Component example values for hardware filter

Sensor signal RS RU RD CF Resulting filter output

Analog Current, 4...20mA 22Ω NC 120Ω 4.3 µF 0.48...2.4V, fg = 2kHz
Analog Voltage, 0...5V 500Ω NC 500Ω 636 nF 0...2.5V, fg = 1kHz
Thermistor, e.g. PT100
with R0 = 1kΩ 10Ω NC 1kΩ 16 µF Temp. dependant Voltage,

fg = 1kHz

SPI MISO 22Ω 10 kΩ NC NC Pull-up and reduction of
signal ringing

RS485, any of Tx/Rx +/- NC NC NC NC Filter not used, connect
R27 to R30 instead

No filter 0Ω NC NC NC Filter bypassed

The Zener diodes are used to protect the MCU from voltage spikes. Each of the five
signal pads has its own filter. A circuit diagram of the filter can be seen in Figure 4.8.
While this system allows for a wide range of possibilities, it has the downside that - once
the filter components are soldered - it can only be used with a specific type of sensor.
However, as these boards are designed to be installed in a vehicle permanently, this is
not a big concern. Some examples for filter values are given in Table 4.1. If RU is not
used, the corner frequency fg of a filter is given by Equation 4.6.

fg =
1

2π ·RS · CF
· (1 +

RS
RD

) (4.6)
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4.2.2. Sensor Compatibility

The sensor interface PCB is compatible with a large range of sensors. The hardware was
implemented in a way that at least the sensor types listed in Figure 3.6 are supported.
The implementation made even more sensors types possible than listed in Figure 3.6. In
some cases, multiple sensor types can be combined with each other. The possible sensor
interfaces are listed below:

• Digital communication interfaces for Serial Peripheral Interface (SPI) in master
and slave mode, Universal synchronous and asynchronous receiver-transmitter (US-
ART), I2C and RS485.

• One Comparator and two Operational amplifiers (OPAMPs) with internal ADC
connection.

• Four input capture or output compare channels to system timer with microsecond
resolution or two input capture or output compare channels to timers for counter
or encoder mode.

• ADC input, external interrupt or General-Purpose Input/Output (GPIO) function-
ality for each of the five signal pads.

4.3. Performance

The performance of the sensor network was evaluated using manufactured versions of
the adapter PCBs discussed above and shown in Figure 4.9. Several example sensors
were written to acquire the data shown in this chapter and test the functionality of
the sensor network and explore its limits. The performance of the network depends on
various factors like the number of sensors on the bus, the update frequency of each of the
sensors and sensor data size for each sensor. The performance parameters calculated in
this section are valid when the sensors on the network are collecting data, the nodes are
not being configured (e.g. no write, read and command requests) and no errors occur.
Also, the bus load caused by the time sync is neglected.

4.3.1. Message duration and bus load

The worst-case duration1 that a message occupies the sensor bus can be calculated using
Equation 4.7 [4], assuming a CAN FD format with standard identifier without an error
occurring during transmission. In the Equation, tarb is the arbitration bit time (1Mbps
by default), tdata is the data bit time (5Mbps by default) and n is the number of data
bytes in the message. A number of examples with different data length and samples

1Depending on the CAN identifier and the message data, a different number of stuff bits are inserted
into the message, causing messages with the same amount of data to have different lengths
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Figure 4.9.: Fully Assembled Prototypes of the Adapter PCB

per second is listed in Table 4.2. The table shows the resulting bus load and package
utilization. Sensors that produce a low number of Bytes per data item have a very low
packet utilization and are therefore less efficient. If the bus load it too high, starvation
can occur for sensors with a low priority. During testing, the network was able to handle
a theoretical bus load above 97% for an extended period of time without loosing any
data.

tmsg = 32 · tarb +

{
(33 + 10 · n) · tdata, if n < 20

(38 + 10 · n) · tdata, otherwise
(4.7)

Table 4.2.: Bus load examples

Number of Data Bytes Data Samples per Second Bus Load Packet Utilization

2 20’000 85.2% 7.5%
4 20’000 93.2% 13.7%
8 17’500 95.6% 23.4%
16 12’000 84.7% 36.3%
20 12’000 95.5% 40.2%
32 8’000 92.9% 49.4%
64 5’000 83.8% 61.1%
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(a) five seconds test (b) first 100ms of the test

Figure 4.10.: Time difference between two nodes with time synchronization.

4.3.2. Latency

The latency of a data item, e.g. the time difference between the time instant where a
sensor node starts collecting a data item and the time instant where a listener has the
data available, depends on the message size (and thus the data size), the time it takes the
sensor to collect the data item and on the bus load. Under optimal conditions where the
data is immediately available to the sensor and the CAN message can be sent instantly,
the average latency can be as low as 76.2 µs for a data size of 4 Byte. The average
message duration in this case is 33.2 µs and it therefore takes on average 43 µs for the
data to traverse the software layers on the sensor node and the listener.

4.3.3. Time Synchronization

The time synchronization algorithm that was described in Section 4.1.1 was also tested
and its performance evaluated. When sending the time synchronization messages with a
period of 2ms, a RMS time drift of 6.46 µs was achieved. The maximum time difference
between the nodes in this case was measured to be 19.26 µs. The relative oscillator drift of
the nodes was measured to be 0.4%. Figure 4.10a shows the measured difference between
the nodes and Figure 4.10b shows the results from the same test for a shorter time span
to show the influence of the time drift and the time instances where the prescaler is
updated more clearly. Without the time synchronization enabled, the nodes would have
drifted 400 µs apart within the first 100ms.

25



Chapter 5
Conclusion and Future Work

5.1. Conclusion

The sensor network architecture developed in this project provides a robust network
suitable for low and medium speed applications. The overhead caused by the CAN
protocol is too big for high speed applications like fast control loops, but it satisfies the
requirements posed by a Swissloop pod. The developed system is not only lighter than
the system previously used by Swissloop, it is also more configurable and scalable.

The Address management and time synchronization of the network layer allow for syn-
chronization of sensor data collection and allow for better timed data collection. The
memory and commands of the session layer allow for a highly customizeable sensor inter-
face. The user layer for the network master and listener provide an easy-to-use interface
for the functionalities of the network.

The adapter PCB developed especially for the sensor network provides a platform to
which many different kinds of sensors can be connected. The high configurability of the
PCB also allow for a wide range of use cases. During this semester project, the bus was
proofed to work with up to five Nodes at a time. Multiple example senors were written
and tested to confirm that the network functions properly.

5.2. Future Work

The next step in the development of the sensor network is to test it in a larger scale
and in a harsher environment. When the system is built into the Swissloop 2021 Pod, it
will be tested with 11 Nodes on the bus, in a noisy environment near an inverter and a
LIM.
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Table 5.1.: Sensors Boards on the Sensor Bus in the 2021 Swissloop Pod

# Sensor conn. to board Signal Location Update Freq. Data Size

1 3x Pressure Sensor Analog Current Brake 1000Hz 6 Byte
2 5x NTC Thermistor Variable Resistance LIM 100Hz 10 Byte
2 5x PTC Thermistor Variable Resistance LIM 100Hz 10 Byte
1 Velocity Sensor RS485 Front 100Hz 6 Byte
2 4x Distance Sensor Analog Current Chassis 5000Hz 8 Byte
1 Radar Sensor Analog Current Front 100Hz 2 Byte

The sensor network currently has the flaw that the software of the sensor nodes can
only be updated via the programming/debug connector on the PCB itself. Therefore, all
sensor nodes in a vehicle must always be accessible in order to update the software, and
all nodes have to be updated individually. This problem can be solved by implementing
a firmware actualization method via the CAN bus. This could not be realized during the
semester project, but it will be implemented in the future.

The software currently only contains a handful of sensors. During the project, a few
example sensors were written to test key functionalities of the software and the net-
work. However, these example sensors do still not cover all the possibilities of the sensor
interface PCB and more sensors need to be written for the deployment of the system.

5.3. Implementation on Swissloop 2021 Pod

The sensor network developed in this semester project is going to be implemented in the
Swissloop 2021 Pod. Development and planning for this pod started in September 2020
and is still ongoing as of the end of this semester project. A list of sensors that will be
connected to the sensor bus is shown in Table 5.1. The leftmost column in the table
indicates the number of sensor interface PCBs used, and the second column lists the
number of sensors per PCBs and the type of sensor. The sensors producing the largest
amount of data are the distance sensors which measure the position of the levitating pod
relative to the track. When all sensors listed in Table 5.1 are active, 93’600 Bytes of
payload data are produced per second. Using a time sync period of 2ms, an arbitration
bitrate of 1Mbps and a data bitrate of 5Mbps, this leads to a bus utilization of 67.96%.
The pod has a VCU that acts as a network master and listener to control the sensors
and collect, log and transmit the data from the sensor bus. Additionally, the inverter is
connected to the sensor bus as a listener and uses the data from the distance sensor for
levitation control.
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PCB Schematics
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